Cho đường tròn tâm y đường kính PQ.Qua P và Q lần lượt vẽ 2 dây song song với nhau trên đường tròn PQ //QN
a, chứng minh PM //QN
b, chứng minh MN là đường kính của đường tròn tâm y
Giải nhanh hộ mình với nha😊😊😊
cho nửa đường tròn tâm i đường kính mn, vẽ các tiếp tuyến mx ny. qua điểm e thuộc nửa đường tròn ( E khác M và N) vẽ tiếp tuyến với đường tròn, nó cắt Mx, Mỹ lần lượt tại P và Q. Chứng minh rằng a, PQ=PM+NQ b,PIQ = 90° c, MN là tiếp tuyến của đường tròn đường kính PQ
a: Xét (O) có
PE,PM là tiếp tuyến
=>PE=PM và IP là phân giác của góc EIM(1)
Xét (O) có
QE,QN là tiếp tuyến
=>QE=QN và IQ là phân giác của góc EIN(2)
PQ=PE+EQ
=>PQ=PM+QN
b: Từ (1), (2) suy ra góc PIQ=1/2*180=90 độ
c: Gọi O là trung điểm của PQ
Xét hình thang MNQP có
O,I lần lượt là trung điểm của PQ,MN
=>OI là đường trung bình
=>OI vuông góc MN
=>MN là tiếp tuyến của (O)
a) Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN
b) Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy các điểm M, N sao cho AM = BN. Qua M và qua N kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt ở C và D. Chứng minh rằng MC và ND vuông góc với CD
CHO ĐƯỜNG TRÒN TÂM 0 BÁN KÍNH r, ĐƯỜNG KÍNH CD, vẽ đường tròn tâm O' có bán kính nhỏ hơn R cắt CD tại P và Q.Từ P và Q lần lượt vẽ 2 đường thẳng song song với nhau cắt đường tròn tâm O bãn kính R tại N và M. Tính diện tích tứ giác MNPQ
biết R-13,MN=10
Hộ mk vs cảm ơn mn
Giải hộ mình bài này với: Cho tam giác nhọn ABC nội tiếp đường tròn (O), có AB<AC. Kẻ các đường cao BE, CF. Gọi H là trực tâm, M là giao điểm của EF và AH. Vẽ đường kính AK cắt cạnh BC tại N.
a) Chứng minh tứ giác BFEC nội tiếp
b) Chứng minh HK song song với MN
c) Qua H vẽ đường thẳng cắt AB, AC lần lượt tại P, Q sao cho HP=HQ. Chứng minh HK vuông góc với PQ.
a) Xét tứ giác BFEC: ^BFC=^BEC=900 => Tứ giác BFEC là tứ giác nội tiếp đường tròn (đpcm).
b) Dễ thấy tứ giác ABKC nội tiếp đường tròn (O) => ^CAK=^CBK hay ^CAN=^CBK (1)
AK là đường kính của (O); B nằm trên (O) => AB\(\perp\)BK
Mà CF\(\perp\)AB => BK//CF => ^CBK=^BCF (2)
(1); (2) => ^CAN=^BCF. Mà ^BCF=^CAH (Cùng phụ ^ABC) => ^CAN=^BAH hay ^CAN=^FAM
Lại có: ^ACN=^AHE (Cùng phụ ^HAC)
Dễ chứng minh tứ giác AFHE nội tiếp đường tròn => ^AHE=^AFE
=> ^ACN=^AFE. Hay ^ACN=^AFM
Xét \(\Delta\)AMF và \(\Delta\)ANC: ^ACN=^AFM; ^CAN=^FAM => \(\Delta\)AMF ~ \(\Delta\)ANC (g.g)
=> \(\frac{AM}{AN}=\frac{MF}{NC}\)(*)
=> ^AMF=^ANC => 1800 - ^AMF=1800 - ^ANC => ^FMH=^CNK
Tứ giác ABKC nội tiếp (O) => ^ABC=^AKC. Mà ^ABC=^AHF (Cùng phụ ^BAH)
=> ^AKC=^AHF hay ^NKC=^MHF.
Xét \(\Delta\)NCK và \(\Delta\)MFH: ^NKC=^MHF; ^CNK=^FMH => \(\Delta\)NKC ~ \(\Delta\)MFH (g.g)
=> \(\frac{HM}{NK}=\frac{FM}{NC}\)(**)
Từ (*) và (**) => \(\frac{AM}{AN}=\frac{HM}{NK}\Rightarrow\frac{AM}{HM}=\frac{AN}{NK}\)=> MN//HK (Định lí Thales đảo) (đpcm).
Cho đường tròn tâm O đường kính AB. Vẽ hai dây AM và BN song song với nhau sao cho sđ B M ⏜ < 90°. Vẽ dây MD song song với AB. Dây DN cắt AB tại E. Từ R vẽ một đường thẳng song song với AM cắt đường thẳng DM tại C. Chứng minh:
a, AB ⊥ DN
b, BC là tiếp tuyến của đường tròn (O)
a, HS tự chứng minh
b, Ta chứng minh được tứ giác BCEN là hình bình hành => BC = EN
Do BCDE là hình bình hành
=> BC = ED; DE = EN
=> BA ⊥ EN => BABC
=> BC là tiếp tuyến
Cho đường tròn tâm O,có bán kính R. Qua điểm M ở ngoài đường tròn, vẽ hai tiếp tuyến MA,MB đến đường tròn(A,B là tiếp điểm).Kẻ đường kính AC của đường tròn tâm O.
a, Chứng minh rằng OM vuông góc với AB, từ đó chứng minh CB song song với OM.
b, Gọi K là giao điểm thứ hai của MC với (O). Chứng minh CK.CM=4R2
c, Chứng minh rằng \(\widehat{MBK}\)= \(\widehat{MCB}\)
a.
Ta có \(MA=MB\) (t/c hai tiếp tuyến cắt nhau)
\(OA=OB=R\)
\(\Rightarrow OM\) là trung trực AB hay OM vuông góc AB
AC là đường kính và B là điểm thuộc đường tròn \(\Rightarrow\widehat{ABC}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ABC}=90^0\Rightarrow AB\perp BC\)
\(\Rightarrow BC||OM\) (cùng vuông góc AB)
b.
Do MA là tiếp tuyến \(\Rightarrow AM\perp AC\) hay tam giác MAC vuông tại A
AC là đường kính và K thuộc đường tròn \(\Rightarrow\widehat{AKC}\) là góc nt chắn nửa đường tròn
\(\Rightarrow\widehat{AKC}=90^0\) hay AK là đường cao trong tam giác vuông MAC
Áp dụng hệ thức lượng:
\(AC^2=CK.CM\Rightarrow CK.CM=\left(2R\right)^2=4R^2\)
c.
Em có nhầm đề ko nhỉ, vì 2 góc này hiển nhiên bằng nhau, ko cần chứng minh, do 1 góc là góc nội tiếp và 1 góc là góc tạo bởi tiếp tuyến và dây cung, cùng chắn cung BK.
Co tam giác ABC nội tiếp đường tròn tâm O(AB<AC) và đường cao AD. Vẽ đường kính AE của đường tròn (O).
a) hứng minh rằng hai tam giác ADB và ACE đồng dạng và AD.AE=AB.AC
b)Vẽ dây AF của đường tròn (O) song song với BC, FE cắt AC tại Q, BF cắt AD tại P. Chứng minh PQ song song với BC
c) AE cắt BC tại K. Chứng minh AB.AC-AD.AK=√BD.BK.CD.CK
a, Xét tam giác ADB và tam giác AEC , ta có
góc EDC = góc ACE = 90 độ ( góc ACE là góc nội tiếp chắn nửa đường tròn )
góc ABD = góc AEC ( 2 góc nội tiếp cùng chắn cung AC )
\(\Leftrightarrow\)tam giác ADB đồng dạng với tam giác AEC (g_g)
\(\Rightarrow\)\(\frac{AD}{AB}=\frac{AC}{AE}\)( Các cặp góc tương ứng )
hay AD.AE=AB.AC