Mọi người cứu mình gấp với ạ :((
Cho tam giác ABC. Tại mỗi đỉnh của tam giác đặt một con kiến. Chúng bò từ A đến B, từ B đến C, từ C đến A. CMR tại mọi thời điểm, tam giác tạo bởi 3 con kiến có trọng tâm không đổi.
Mọi người giúp gấp với ạ :((
Cho tam giác ABC. Tại mỗi đỉnh của tam giác đặt một con kiến. Chúng bò từ A đến B, từ B đến C, từ C đến A (chuyển động đều). CMR tại mọi thời điểm, tam giác tạo bởi 3 con kiến có trọng tâm không đổi.
Gọi vận tốc của các con kiến trên 3 cạnh lần lượt là \(v_{AB};v_{BC};v_{AC}\)
Đặt \(\dfrac{v_{AB}}{AB}=\dfrac{v_{BC}}{BC}=\dfrac{v_{AC}}{AC}=k\Rightarrow\left\{{}\begin{matrix}v_{AB}=k.AB\\v_{BC}=k.BC\\v_{AC}=k.AC\end{matrix}\right.\)
Tại 1 thời điểm t bất kì, giả sử con kiến trên cạnh AB đi tới điểm M, con kiến trên cạnh BC đi tới điểm N, con kiến trên cạnh CA đi tới điểm P
\(\Rightarrow\left\{{}\begin{matrix}AM=t.v_{AB}=t.k.AB\\BN=t.v_{BC}=t.k.BC\\CP=t.v_{CA}=t.k.CA\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=t.k.\overrightarrow{AB}\\\overrightarrow{BN}=t.k.\overrightarrow{BC}\\\overrightarrow{CP}=t.k.\overrightarrow{CA}\end{matrix}\right.\) (1)
Gọi G là trọng tâm tam giác ABC
Từ (1) ta có:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=tk\left(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\right)=tk.\overrightarrow{0}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{AG}+\overrightarrow{GM}+\overrightarrow{BG}+\overrightarrow{GN}+\overrightarrow{CG}+\overrightarrow{GP}=\overrightarrow{0}\)
\(\Rightarrow\left(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}\right)+\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{0}+\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)
\(\Rightarrow G\) là trọng tâm tam giác MNP
\(\Rightarrow\) Tại mọi thời điểm thì tam giác tạo bởi 3 con kiến luôn có trọng tâm không đổi, là điểm trùng với trọng tâm của tam giác ABC
Đề bài sai nhé em, bài toán chỉ đúng trong trường hợp duy nhất, đó là khi vận tốc của các con kiến thỏa mãn \(\dfrac{v_{AB}}{AB}=\dfrac{v_{BC}}{BC}=\dfrac{v_{CA}}{CA}\) (nghĩa là vận tốc con kiến trên cạnh nào thì có độ lớn tỉ lệ với độ dài cạnh ấy). Chuyển động đều là chưa đủ.
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O . Gọi H là giao điểm của đường trung truyến CM với OA . Gọi G là trọng tâm của tam giác AMC . CMR :
a ) OM vuông góc GH
b ) OG vuông góc CM
Mình cần gấp nhé mọi người !!! À , mình mới học đến chương 2 bài 3 thọi nhé ( hình học ) mọi người đừng vượt ra kiến thức nhé !!!
.1.Cho tam giác ABC cân tại A có AD là đường phân giác.
a) Chứng minh tam giác ABD = tam giác ACD
b) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm A, G, D thẳng hàng.
c) Tính DG biết AB 13cm,BC 10cm
2.Cho tam giác ABC vuông ở A, có AB = 16cm,AC = 30cm. Tính tổng các khoảng cách từ trọng tâm G của tam giác đến các đỉnh của tam giác.
3.Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt C ở N. Biết AN = MN, BN cắt AM ở O. Chứng minh: a) Tam giác ABC cân ở A
b) O là trọng tâm tam giác ABC.
4.Cho tam giác cân ABC, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm O cách đều 3 đỉnh của tam giác ABC.
Cần gấp ạ!
Cho 1 lục giác đều. Tại mỗi đỉnh của lục giác có 1 con chim đậu. Vào cùng một lúc, tất cả 6 con chim đều bay lên khỏi vị trí của mình. Rồi sau đó vào cùng 1 lúc, chúng lại đậu xuống các đỉnh của lục giác ( các con chim ko nhất thiết đậu xuống vị trí cũ của mình ). CMR: tồn tại 3 con chim, sao cho tam giác tạo bởi các đỉnh mà chúng đậu trước khi bay lên bằng tam giác tạo bởi các đỉnh mà chúng đậu xuống.
Cho Tam giác abc vuông tại a gọi h là chân đường vuông góc kẻ từ a Đến cạnh bc. Tìm khoảng cách từ đỉnh a b c Đến các cạnh của tam giác abc
h(A;BC)=AH
h(B;AC)=BA
h(C;AB)=CA
Cho tam giác ABC cân tại A (góc A nhọn).Từ A kẻ AH vuông BC (H thuộc BC)
a) CM :tam giác AHB=tam giác AHC và H là trung điểm của BC
b) Gọi M là trung điểm của AC.Qua C kẻ đường thẳng song song với AB cắt BM tại E.CM: AB=CE và tam giác ACE cân tại C
c) Gọi I là giao điểm của AH và BE. CM: I là trọng tâm của tam giác ABC
d) CM: AB+AE>3BI
Mọi người giúp mình với mình đang cần gấp mình cảm ơn mọi ngời nhiều
A) Trong TG cân, đường vuông góc xuất phát từ đỉnh cân đồng thời là đường trung tuyến, trung trực, phân giác
b) TG AMC = TG CME (g.c.g : AM= MC trung điểm; Góc AMB= góc CME đối đỉnh ; góc MCE = góc BAM so le trong)
c) I nằm trên trung điểm BC và trung điểm AC
D)
Ta có: BM=ME ( TG AMC= TG CME)
=> BE = 2 BM
mà BI =2/3 BM ( I là trọng tâm)
=> BI= 1/3 BE
=> 3 BI = BE
Xét TG AEB, ta có :
BE < AB+ AE ( Bất đẳng thức trong TG)
mà BE= 3 BI( cmt)
=> 3 BI< AB + AE
Có ba điện tích điểm q 1 = 15 . 10 - 9 C , q 2 = - 12 . 10 - 9 C v à q 3 = 7 . 10 - 9 C đặt tại ba đỉnh tam giác đều ABC có cạnh a = 10 cm. Tính:
a. Điện thế tại tâm O của tam giác.
b. Điện thế tại điểm H (AH là đường cao).
c. Công của lực điện trường khi làm electron di chuyển từ O đến H.
d. Công cần thiết để eletron chuyển động từ O đến H.
a. Điện thế tại O: V O = k q 1 A O + k q 2 B O + k q 3 C O
Với A O = A B = C O = 2 3 A H = a 3 3 = 0 , 1 3
→ V O = k A O q 1 + q 2 + q 3 = 1558 , 8 ( V )
b. Điện thế tại H: V H = k q 1 A H + k q 2 B H + k q 3 C H → A H = a 3 2 = 0 , 1 3 2 ; BH = CH = a 2 = 0 , 05
Vậy V H = 658 , 8 ( V )
c. Công của lực điện trường: Electron di chuyển trong vùng điện trường của ba điện tích q 1 , q 2 , q 3 có công không phụ thuộc vào hình dạng đường đi, và bằng độ giảm thế năng điện tích tại điểm đầu và điểm cuối: A = q ( V O − V H ) = − 1 , 6.10 − 19 ( 1558 , 8 − 658 , 8 ) = − 1440.10 − 19 ( J )
d. Công cần thiết để electron di chuyển từ O đến H:
Vì công của lực điện trường trên đoạn OH là A < 0, công cản. Nên công cần thiết để electron di chuyển từ O đến H là: A ’ = - A = 1440 . 10 - 19 J
Bài 1: Cho tam giác ABC, hai đường phân giác BD và CE của tam giác cắt nhau tại O. Tia AO cắt BC tại M. Tam giác ABC phải có điều kiện gì để AM vuông góc với BC.
Bài 2: Cho tam giác ABC có góc A= 50°. Đường phân giác của góc B và đường phân giác ngoài tại đỉnh C của tam giác cắt nhau tại O. Tính số đo góc BAO.
Bài 3: Cho tam giác ABC, các tia phân giác của các góc B và C cắt nhau tại O. Từ A vẽ một đường thẳng vuông góc với OA, cắt các tia BO và CO lần lượt tại M và N. CMR: BM vuông góc với BN, CM vuông góc với CN.
Mọi người giúp mình nhanh nha😙😙😙😙
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo bài 3 tại link trên nhé!
Tam giác ABC, B(1;2) phân giác trong của góc A có pt là 2x+y-1=0, khoảng cách từ C đến phân giác đó gấp 3 lần khoảng cách từ B đến phân giác đó, C thuộc trục tung. Tìm các đỉnh còn lại của tam giác
\(\Delta:2x+y-1=0\)
Gọi \(C=\left(0;m\right)\) thuộc trục tung.
Ta có \(d\left(C;\Delta\right)=3d\left(B;\Delta\right)\)
\(\Leftrightarrow\dfrac{5\left|2.1+2.1-1\right|}{\sqrt{2^2+1^2}}=\dfrac{\left|2.0+1.m-1\right|}{\sqrt{2^2+1^2}}\)
\(\Leftrightarrow\left|m+1\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}m=14\\m=-16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}C=\left(0;14\right)\left(\text{loại do cùng phía với }\Delta\right)\\C=\left(0;-16\right)\end{matrix}\right.\)
\(\Rightarrow C=\left(0;-16\right)\)
Lấy B' đối xứng với B qua \(\Delta\), M là giao điểm của BB' và \(\Delta\)
BB' có phương trình: \(x-2y+3=0\)
M có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}2x+y-1=0\\x-2y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=\dfrac{7}{5}\end{matrix}\right.\Rightarrow M=\left(-\dfrac{1}{5};\dfrac{7}{5}\right)\)
\(\Rightarrow B'=\left(-\dfrac{7}{5};\dfrac{4}{5}\right)\)
AC có phương trình \(\dfrac{x}{0+\dfrac{7}{5}}=\dfrac{y+16}{-16-\dfrac{4}{5}}\Leftrightarrow84x+7y+112=0\)
A có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}84x+7y+112=0\\2x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{17}{10}\\y=\dfrac{22}{5}\end{matrix}\right.\Rightarrow A\left(-\dfrac{17}{10};\dfrac{22}{5}\right)\)