Mình cần gấp ạ
Bài 3: Cho hình chóp SABCD có đáy là hình thang AD//BC. M, N là 2 điểm bất kỳ trên SB, SD
a) Tìm giao tuyến của ( SAD ) và ( SBC )
b) Tìm giao tuyến của MN và ( SAC )
cho hình chóp SABCD có đáy ABCD là hình bình hành .M;N lần lượt là trung điểm của SB và CD
1.Tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
2. Chứng minh MN // (SAD)
3.xác định giao điểm I của MN và (SAC) .tính tỉ số IM/ IN
giúp mình với ạ!!!!!!
cho hình chóp Sabcd có đáy là hình thang , đáy lớn CD 1)tìm giao tuyến(Sac) và (Sbd) 2) tìm giao tuyến ( Sad) và (Sbc) 3) tìm giao tuyến (S ab) và ( S cd) 4) M thuộc miền trong tam giác Sad tìm giao điểm bd và ( Scm)
a: Gọi O là giao điểm của AC và BD trong mp(ABCD)
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
2: Trong mp(ABCD), gọi E là giao điểm của AD và BC
\(E\in AD\subset\left(SAD\right);E\in BC\subset\left(SBC\right)\)
Do đó: \(E\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(\left(SAD\right)\cap\left(SBC\right)=SE\)
3: Xét (SBA) và (SCD) có
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
AB//CD
Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
Cho hình chóp S. ABCD có đáy ABCD là tứ giác a). Tìm giao tuyến của (SAD) và (SBC) ? b). Tìm giao tuyến của (SAB) và (SDC) ? c). Gọi M;N là trung điểm của AD và DC. Chứng minh MN// (SAC) ? d) . Gọi K là điểm nằm bên cạnh SB. Tìm giao điểm của NK và mạ QT phẳng (SAC)
Cho hình chóp SABCD. Đáy ABCD là hình bình hành. M là trọng tâm tam giác SAB, N là trung điểm SD.
a) Tìm giao tuyến của (SAC) và (SBD).
b) Tìm giao tuyến của (SAD) và (SBC).
c) Tìm giao điểm của MN và (ABCD). d) Tìm I là giao điểm của SM và (ABCD).
e) F là giao điểm của CI và BD. Chứng minh rằng: MF// (SAD).
a: Gọi O là giao điểm của AC và BD
\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)
=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
b: Xét (SAD) và (SBC) có
AD//BC
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
d: Trong mp(SAB), gọi I là giao điểm của AB với SM
\(I\in SM;I\in AB\subset\left(ABCD\right)\)
Do đó: I là giao điểm của SM với mp(ABCD)
CHO HÌNH CHÓP SABCD CÓ ĐÁY ABCD LÀ HÌNH BÌNH HÀNH . GỌI M N E LẦN LƯỢT LÀ TRUNG ĐIỂM SA ; SD ; BC .
A/ TÌM GIAO TUYẾN (MBC) VÀ (SAD).
B/ TÌM GIAO ĐIỂM BM VÀ (SAC).
C/ CHỨNG MINH MN// (SBC).
D/NE // (SAB)
Bài 3: Cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O Gọi M, N lần lượt là trung điểm của SB, BC
a)Tìm giao tuyến của (SAB ) và (SCD)
b)Tìm giao tuyến của (OMN) và (SAC)
c)Tìm giao điểm E của MN và (SAD)
d)Tìm giao điểm Fcủa SCvà (ADM)
e)Chứng minh CD//(OMN) và DF//(OMN)
f)Tìm thiết diện của (OMN) với hình chóp S.ABCD
Cho hình chóp SABCD có đáy hình thang abcd với ab là đáy lớn AB=2CD. Gọi M, N lần lượt là trung điểm của các cạnh SB và SC
a, Tìm giao tuyến của 2 mp (SAD) và ( SBC)
b, Tìm giao điểm I của đường thẳng SD với mp ( AMN)
c, Dựng thiết diện của hình chóp với mặt phẳng ( AMN)
d, TÍnh tỉ số \(\dfrac{SI}{SD}\)
Kéo dài AD và BC cắt nhau tại E
\(\Rightarrow SE=\left(SAD\right)\cap\left(SBC\right)\)
Trong mp (SBC), nối MN kéo dài cắt SE tại F
Trong mp (SAD), nối AF cắt SD tại I
\(\Rightarrow I=SD\cap\left(AMN\right)\)
Tứ giác AINM chính là thiết diện của (AMN) và chóp
MN là đường trung bình tam giác SCD \(\Rightarrow F\) là trung điểm SE
Mặt khác CD song song và bằng 1/2 AB \(\Rightarrow\) CD là đường trung bình tam giác ABE hay D là trung điểm AE
\(\Rightarrow\) I là trọng tâm tam giác SAE
\(\Rightarrow\dfrac{SI}{SD}=\dfrac{2}{3}\)
Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AB = 2CD.Gọi M,N lần lượt là trung điểm của các cạnh bên SA,SB và O là giao điểm của AC và BD .
a) Tìm giao tuyến của (SAC) và (SBD),(SAD) và (SBC) .
b) Chứng minh:MN // CD và MD // NC
c) Tìm giao điểm của đường thẳng AN với (SCD)
d)Gọi I trên SC sao cho SI = 2IC. C/m:SA // (IBD)
e) Gọi G là trọng tâm SBC. C/m:OG // (SCD) .
a, \(\left\{{}\begin{matrix}S\subset\left(SAC\right)\\O\subset\left(SAC\right)\end{matrix}\right.\Rightarrow SO\subset\left(SAC\right)\)
\(\left\{{}\begin{matrix}S\subset\left(SBD\right)\\O\subset\left(SBD\right)\end{matrix}\right.\Rightarrow SO\subset\left(SBD\right)\)
\(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)
Gọi \(K=AD\cap BC\)
\(\Rightarrow\left\{{}\begin{matrix}S\subset\left(SAD\right)\\K\subset\left(SAD\right)\end{matrix}\right.\Rightarrow SK\subset\left(SAD\right)\)
\(\left\{{}\begin{matrix}S\subset\left(SBC\right)\\K\subset\left(SBC\right)\end{matrix}\right.\Rightarrow SK\subset\left(SBC\right)\)
\(\Rightarrow SK=\left(SAD\right)\cap\left(SBC\right)\)
b, \(MN\) là đường trung bình.
\(\Rightarrow MN//AB\)
Lại có: \(CD//AB\)
\(\Rightarrow MN//CD\)
Mặt khác: \(MD=\dfrac{1}{2}AB=CD\Rightarrow MNCD\) là hình bình hành.
\(\Rightarrow MD//NC\)
cho hình chóp S.ABCD, đáy ABCD là hình thang, có đáy lớn AB. Gọi M,N lần lượt là trung điểm SA, SC, E = AC giao BD.
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
c) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
a: \(E\in AC\subset\left(SAC\right)\)
\(E\in BD\subset\left(SBD\right)\)
Do đó: \(E\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SE\)
b: Gọi K là giao của AD với BC
\(K\in AD\subset\left(SAD\right)\)
\(K\in BC\subset\left(SBC\right)\)
Do đó: \(K\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(SK=\left(SAD\right)\cap\left(SBC\right)\)
c: AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy\), xy đi qua S và xy//AB//CD