giải phương trình:
\(7x^2-4x-3=0\)
1. Giải phương trình: \(\sqrt{x-2}+\sqrt{4-x}=\sqrt{2}\) .
2. Giải phương trình: \(4x^4-7x^3+9x^2-10x+4=0\).
3. Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+y^2=3-xy\\x^4+y^4=2\end{matrix}\right.\) .
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
Nãy mình tìm được một cách giải tương tự cho câu 2.
PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)
Vậy pt có 1 nghiệm bằng 1.
\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)
\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)
\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)
\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)
Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)
Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))
giải phương trình :
7x3 - 4x2 + 4x + 4 =0
Giải phương trình :
\(x^3-4x^2+7x-6=0\)
\(x^3-2x^2-2x^2+4x+3x-6=0\)
\(\Leftrightarrow x^2\left(x-2\right)-2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-2x+3\right)=0\)
\(\Leftrightarrow x=2\)
giải phương trình (4x+3)^3 + (5-7x)^3 + (3x -8)^3 = 0
giải phương trình sau
4x+1-\(\sqrt{3x^2+7x}-2\sqrt{3x-1}\)= 0
ĐKXĐ: \(x\ge\dfrac{1}{3}\)
PT \(\Leftrightarrow2\left(x-\sqrt{3x-1}\right)+\left[\left(2x+1\right)-\sqrt{3x^2+7x}\right]=0\)
\(\Leftrightarrow\dfrac{2\left(x^2-3x+1\right)}{x+\sqrt{3x-1}}+\dfrac{\left(2x+1\right)^2-\left(3x^2+7x\right)}{2x+1+\sqrt{3x^2+7x}}=0\)
\(\Leftrightarrow\left(x^2-3x+1\right)\left[\dfrac{2}{x+\sqrt{3x-1}}+\dfrac{1}{2x+1+\sqrt{3x^2+7x}}\right]=0\)
Cái ngoặc to vô nghiệm, đến đây bạn có thể giải.
Giải phương trình : 4x4+7x2-2=0
Đặt \(k=x^2\left(k\ge0\right)\)
Phương trình trở thành \(4k^2+7k-2=0\)
Ta có: \(\Delta=7^2+4.4.2=81,\sqrt{\Delta}=9\)
\(\Rightarrow\orbr{\begin{cases}k=\frac{-7+9}{8}=\frac{1}{4}\\k=\frac{-7-9}{8}=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x^2=-2\left(VL\right)\end{cases}}\)
Vậy phương trình có 2 nghiệm \(\left\{\pm\frac{1}{2}\right\}\)
\(4x^4+7x^2-2=0\)
\(\Leftrightarrow\left(4x^4+8x^2\right)-\left(x^2+2\right)=0\)
\(\Leftrightarrow4x^2\left(x^2+2\right)-\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(4x^2-1\right)=0\)
Vì \(x^2+2>0\forall x\inℝ\)
\(\Rightarrow4x^2-1=0\)
\(\Leftrightarrow4x^2=1\)
\(\Leftrightarrow x^2=\frac{1}{4}\)
\(\Leftrightarrow x=\pm\frac{1}{2}\)
Giải phương trình :
\(x^3-4x^2+7x-6=0\)
x3-4x2+7x-6=0
=>x3-2x2-2x2+3x+4x-6=0
=>x3-2x2+3x-2x2+4x-6=0
=>x(x2-2x+3)-2(x2-2x+3)=0
=>(x-2)(x2-2x+3)=0
=>x-2=0 hoặc x2-2x+3=0
Với x-2=0 =>x=2Với x2-2x+3=0 =>vô nghiệmVậy pt trên có nghiệm là x=2
hoặc có thể nhóm như này
x3-4x2+7x-6=0
<=>x3-4x2+4x+3x-6=0
<=>x.(x-2)2+3.(x-2)=0
<=>(x-2)(x2-2x+3)=0
<=>x=2 ( vì x2-2x+3 >0)
Bài 3.giải các phương trình sau bằng cách đưa về phương trình tích.
a) (3x+1)(7x+3)=(5x-7)(3x+1)
b) x^2+10x+25-4x(x+5)=0
c) (4x-5)^2(16x^2-25)=0
d) (4x+3)^2=4(x^2-2x+1)
e) x^2-11x=28=0
f) 3x^3-3x^2-6x=0
Bài 1: Giải các phương trình sau:
a) 3x – 15 = 0 b) 4x + 20 = 0 c) -5x – 20 = 0 d) 3x + 1 = 7x – 11
e) 3 + 2x = 2(x + 1) g
a: 3x-15=0
nên 3x=15
hay x=5
b: 4x+20=0
nên 4x=-20
hay x=-5
c: -5x-20=0
nên -5x=20
hay x=-4
(4x-5).(3x2-7x+4) >= 0. Giải bất phương trình