Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lizy
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 lúc 20:16

Em kiểm tra lại đề, mẫu số của phân số đầu tiên chắc chắn bị sai

Phạm Thị Thùy Dương
Xem chi tiết
vũ thị lan
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 21:07

\(a,A=4\sqrt{3}-5\sqrt{3}+2-\sqrt{3}=2-2\sqrt{3}\\ B=\dfrac{x+2\sqrt{x}+8+2\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-4}\\ b,B-\dfrac{1}{2}A=\dfrac{\sqrt{x}}{\sqrt{x}-4}-\dfrac{1}{2}\left(2-2\sqrt{3}\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-4}=1+\sqrt{3}\\ \Leftrightarrow\sqrt{x}=\left(1+\sqrt{3}\right)\left(\sqrt{x}-4\right)\Leftrightarrow\sqrt{x}=\sqrt{x}-4\sqrt{3}+\sqrt{3x}-4\\ \Leftrightarrow\sqrt{3x}=4\sqrt{3}+4\\ \Leftrightarrow\sqrt{x}=\dfrac{4\sqrt{3}+4}{\sqrt{3}}\\ \Leftrightarrow\sqrt{x}=\dfrac{12+4\sqrt{3}}{3}\\ \Leftrightarrow x=\dfrac{192+96\sqrt{3}}{9}=\dfrac{64+32\sqrt{3}}{3}\)

Huỳnh Như
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 12 2020 lúc 11:14

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne2\end{matrix}\right.\)

\(M=\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(M=\dfrac{-8\sqrt{x}}{x-4}\)

\(M< 0\Leftrightarrow-\dfrac{8\sqrt{x}}{x-4}< 0\Leftrightarrow x-4>0\Leftrightarrow x>4\)

Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 9 2021 lúc 22:25

Bài 1: 

a: Ta có: \(x^2-2\sqrt{5}x+5=0\)

\(\Leftrightarrow x-\sqrt{5}=0\)

hay \(x=\sqrt{5}\)

b: Ta có: \(\sqrt{x+3}=1\)

\(\Leftrightarrow x+3=1\)

hay x=-2

Triết Phan
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 7:14

\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)

Quân Nguyễn
Xem chi tiết
YangSu
8 tháng 8 2023 lúc 8:34

\(a,dkxd:x\ge0,x\ne4\)

\(b,B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\dfrac{1}{\sqrt{x}-2}\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\sqrt{x^2}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(c,x=16\left(tm\right)\Rightarrow B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{4+2}{4\left(4-2\right)}=\dfrac{6}{8}=\dfrac{3}{4}\)

\(d,B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Leftrightarrow\sqrt{x}+2>0\Leftrightarrow\sqrt{x}>-2\left(ktm\right)\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

Kết hợp với \(dk:x\ge0\) ta kết luận \(0\le x< 4\) thì \(B>0\).

Gấuu
8 tháng 8 2023 lúc 8:36

a) Điều kiện xác định:

\(\left\{{}\begin{matrix}x-2\sqrt{x}\ne0\\x\ge0\end{matrix}\right.\)\(\Leftrightarrow x>0,x\ne4\)

Vậy...

b) \(B=\dfrac{\sqrt{x}.\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)^2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

Vậy \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

c) Tại x=16 ( thỏa mãn đk) thay vào B đã rút gọn ta được:

\(B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{3}{4}\)

d) \(B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\)

\(\Leftrightarrow\sqrt{x}-2>0\)\(\Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)

Vậy x>4 thì B>0

Nguyễn Ngọc Bảo
Xem chi tiết
Trịnh Thành Công
20 tháng 8 2017 lúc 10:07

\(A=\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x^2}{x\sqrt{x}-x}\right)\left(2-\frac{1}{\sqrt{x}}\right)\left(ĐKXĐ:0< x;x\ne1\right)\)

\(A=\left(\frac{x^2\sqrt{x}}{x\left(\sqrt{x}-1\right)}-\frac{x^2}{x\left(\sqrt{x}-1\right)}\right)\left(\frac{2\sqrt{x}-1}{2\sqrt{x}}\right)\)

\(A=\left(\frac{x^2\left(\sqrt{x}-1\right)}{x\left(\sqrt{x}-1\right)}\right)\left(\frac{2\sqrt{x}-1}{2\sqrt{x}}\right)\)

\(A=x.\left(\frac{2\sqrt{x}-1}{2\sqrt{x}}\right)\)

\(A=\frac{x\left(2\sqrt{x}-1\right)}{2\sqrt{x}}\)

b)Tại A=0(ĐKXĐ:0<x;x khác 1) ta đc:

     \(A=\frac{x\left(2\sqrt{x}-1\right)}{2\sqrt{x}}=0\)

         \(\Leftrightarrow x\left(2\sqrt{x}-1\right)=0\)

          \(\Rightarrow\orbr{\begin{cases}x=0\\2\sqrt{x}-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\left(kOTM\right)\\x=\frac{1}{4}\end{cases}}\)

Vậy tại A=0 x=1/4

Tại A=3(ĐKXĐ:0<x;x khác 1) ta đc:

         \(\frac{x\left(2\sqrt{x}-1\right)}{2\sqrt{x}}=3\)

         \(\Leftrightarrow2\sqrt{x}^3-x=6\sqrt{x}\)

          \(\Leftrightarrow x=0\left(koTM\right)\)

Herimone
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 21:33

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)

Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 8:20

\(P=\dfrac{A}{B}=\sqrt{x}+1\)

P<7/4

=>căn x<3/4

=>0<x<9/16