Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 2 2019 lúc 5:50

Đáp án D

Ta có C 12 1 . C 10 1 = 120

Khi đó  C 12 1 . C 10 1 = 120   . Đặt C 12 1 . C 10 1 = 120

Ta luôn có C 12 1 . C 10 1 = 120

C 12 1 . C 10 1 = 120  Suy ra C 12 1 . C 10 1 = 120

Xét hàm số  f t = t 2 − 8 t + 3   trên khoảng − 1 ; + ∞ ,có f ' t = 2 t + 1 2 t + 4 t + 3 2 > 0 ; ∀ t > − 1

Hàm số f(t)  liên tục trên − 1 ; + ∞ ⇒ f t đồng biến trên − 1 ; + ∞

Do đó, giá trị nhỏ nhất của f(t)  là min − 1 ; + ∞ f t = f − 1 = − 3 . Vậy  P min = − 3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 3 2018 lúc 16:09

Ta có:  2 x 2 + 1 2 ≥ 2 x ;  2 y 2 + 1 2 ≥ 2 y và  x 2 + y 2 ≥ 2 x y

Cộng vế với vế các BĐT trên ta được:

3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2

=> A =  x 2 + y 2 ≥ 1 2

Từ đó tìm được  A m i n = 1 2 <=> x = y =  1 2

Phan Hải Nam
Xem chi tiết
Phan Hải Nam
25 tháng 7 2018 lúc 20:39

Ai giúp mik vs

Phan Hải Nam
25 tháng 7 2018 lúc 20:49

Huhu ai giúp vs

Lê Quốc Anh
Xem chi tiết
Xyz OLM
13 tháng 12 2020 lúc 1:04

Ta có x + y = 10

=> x = 10 - y

Khi đó P = xy + 1992

= (10 - y).y + 1992

= -y2 + 10y + 1992

= -y2 + 10y - 25 + 2017

= -(y2 - 10y + 25) + 2017

= -(y - 5)2 + 2017 \(\ge2017\)

Dấu "=" xảy ra <=> y - 5 = 0

=> y = 5

=> x = 5

Vậy Max P = 2017 <=> x = 5 ; y = 5

Khách vãng lai đã xóa
Đen xjnh géi
Xem chi tiết
Yeutoanhoc
2 tháng 6 2021 lúc 10:08

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

_Halcyon_:/°ಠಿ
2 tháng 6 2021 lúc 10:12

A= x2 - 4x +1

   = x2 - 4x + 4 - 3

   = (x-2)2 -3

Ta có (x-2)2 ≥ 0 ∀ x

    ⇒ (x-2)2 -3 ≥ -3 ∀ x

Vậy AMin= -3 tại x=2

B= 4x2+4x+11

  = 4x2+4x+1+10

  = (2x+1)2+10

Ta có (2x+1)2 ≥ 0 ∀ x

     ⇒ (2x+1)2+10 ≥ 10 ∀ x

Vậy BMin=10 tại x= \(\dfrac{-1}{2}\)

C=(x-1)(x+3)(x+2)(x+6)

  = (x-1)(x+6)(x+3)(x+2)

  = (x2+5x-6) (x2+5x+6)

  = (x2+5x)2 -36

Ta có (x2+5x)≥ 0 ∀ x
  ⇒ (x2+5x)2 -36 ≥ -36 ∀ x

Vậy CMin=-36 tại x=0 hoặc x= -5

蝴蝶石蒜
Xem chi tiết
Akai Haruma
30 tháng 5 2021 lúc 17:39

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

Akai Haruma
30 tháng 5 2021 lúc 17:42

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

 

thao nguyen phuong
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 3 2017 lúc 13:13

a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .  

b) Ta có N = ( x   +   2 y ) 2   +   ( y   –   2 ) 2   +   ( x   +   4 ) 2   –   120   ≥   -   120 .

Tìm được N min  = -120 Û x = -4 và y = 2.

khangnip
Xem chi tiết
HT.Phong (9A5)
4 tháng 8 2023 lúc 6:30

a) \(M=x^2-3x+10\)

\(M=x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}+\dfrac{31}{4}\)

\(M=\left(x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}\right)+\dfrac{31}{4}\)

\(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\)

Mà: \(\left(x-\dfrac{3}{2}\right)^2\ge0\) nên: \(M=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Dấu "=" xảy ra 

\(\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}=\dfrac{31}{4}\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

Vậy: \(M_{min}=\dfrac{31}{4}\) với \(x=\dfrac{3}{2}\)

b) \(N=2x^2+5y^2+4xy+8x-4y-100\)

\(N=x^2+x^2+4y^2+y^2+4xy+8x-4y-120+16+4\)

\(N=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)

\(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)

Mà:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x+4\right)^2\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\) nên \(N=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge120\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2y=0\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-4\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy: \(N_{min}=120\) khi \(\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Gia Huy
4 tháng 8 2023 lúc 6:16

a

\(M=x^2-3x+10=x^2-2.\dfrac{3}{2}.x+\dfrac{9}{4}+\dfrac{31}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

Min M \(=\dfrac{31}{4}\) khi và chỉ khi \(x=\dfrac{3}{2}\)

Gia Huy
4 tháng 8 2023 lúc 6:20

b

\(N=2x^2+5y^2+4xy+8x-4y-100\\ =x^2+8x+16+y^2-4y+4+x^2+4xy+4y^2-120\\ =\left(x+4\right)^2+\left(y-2\right)^2+\left(x+2y\right)^2-120\ge-120\)

Min N \(=-120\) khi và chỉ khi \(x=-4\) và \(y=2\)