Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Việt
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 11 2021 lúc 20:03

\(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\\ \Leftrightarrow\left(x+y+z\right)\left(xy+yz+zx\right)-xyz=0\\ \Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

\(\forall x=-y\Leftrightarrow VT=-y^{2017}+y^{2017}+z^{2017}=z^{2017}=\left(-y+y+z\right)^{2017}=VP\\ \forall y=-z\Leftrightarrow VT=x^{2017}-z^{2017}+z^{2017}=x^{2017}=\left(x-z+z\right)^{2017}=VP\\ \forall z=-x\Leftrightarrow VT=x^{2017}+y^{2017}-x^{2017}=y^{2017}=\left(x+y-x\right)^{2017}=VP\)

Vậy ta đc đpcm

Thành Trần Trọng
Xem chi tiết
Lê Quốc Anh
Xem chi tiết
My Trà
Xem chi tiết
Phương An
7 tháng 8 2017 lúc 17:04

https://hoc24.vn/hoi-dap/question/258448.html

x + y = 0

=> x = - y (1)

Thay (1) vào P, ta có:

P = x2017 - x2017 + 2017 = 2017

Nguyễn Thị Trang Nhunh
Xem chi tiết
Trịnh Ngọc Thành
Xem chi tiết
xuân bản bùi
Xem chi tiết
Nguyễn Linh Chi
13 tháng 6 2020 lúc 10:31

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)  ( x, y , z khác 0 )  (@)

<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

<=> \(\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

<=> x + y = 0  (1) 

hoặc: \(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}=0\)(2)

(2) <=> \(zx+zy+z^2+xy=0\)

<=> \(z\left(x+z\right)+y\left(x+z\right)=0\)

<=> \(\left(x+z\right)\left(y+z\right)=0\)

<=> x + z = 0 hoặc y + z = 0 

<=> x = - z hoặc y = -z 

(1) <=> x = - y 

Vậy: (@) <=> x = - y hoặc y = -z hoặc z = - x

Vì vị trí của x, y, z có vai trò như nhau. G/S: x = - y

khi đó: \(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{\left(-y\right)^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{z^{2017}}\)

và: \(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)

Do vậy: \(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\)\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}\)

Khách vãng lai đã xóa
Cỏ Ba Lá
Xem chi tiết
Ma Đức Minh
18 tháng 8 2017 lúc 14:45

trả lời gì đây bạn

Mai Nguyễn Bảo Ngọc
Xem chi tiết
Hiiiii~
21 tháng 3 2017 lúc 11:27

bậc là 2017 nhé bn! Mai Nguyễn Bảo Ngọc

Chúc bn học tốt!ok

Vũ Ngọc Diệp
Xem chi tiết