https://hoc24.vn/hoi-dap/question/258448.html
x + y = 0
=> x = - y (1)
Thay (1) vào P, ta có:
P = x2017 - x2017 + 2017 = 2017
https://hoc24.vn/hoi-dap/question/258448.html
x + y = 0
=> x = - y (1)
Thay (1) vào P, ta có:
P = x2017 - x2017 + 2017 = 2017
Cho ba số thực dương x, y, z thỏa mãn: xy+yz+zx=2017. chứng minh : \(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{3}{2}\)
Tính s=x+y Có (x+\(\sqrt{x^2+2017}\) )(y+\(\sqrt{y^2+2017}\) )
Cho \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Tính \(S=x^{2017}+y^{2017}\)
B1
a,cho \(\left(x+\sqrt{2017+x^2}\right).\left(y+\sqrt{2017+y^2}\right)=2017\)
Tính P=2019x+2019y+2020
b,Cho a,b,c là 3 số dương tm:a+b+c=3
Tìm min P=\(\frac{1}{a^2+a}+\frac{1}{b^2+b}+\frac{1}{c^2+c}\)
tìm giá trị nhỏ nhất của \(A=\sqrt{x-2015}+\sqrt{2017-x}\)
RÚT GỌN BIỂU THỨC
a)\(\sqrt{89^2}\)
b) \(\sqrt{2017}+\sqrt{\left(\sqrt{2017}-2016\right)^2}\)
xy +\(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}\) =\(\sqrt{2017}\) . Tính giá trị của BT : A=\(x\sqrt{y^2+1}+y\sqrt{x^2+1}\)
Tính giá trị của biểu thức \(P=\dfrac{4\left(x+1\right)x^{2018}-2x^{2017}+2x+1}{2x^2+3x}\) tại \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2\sqrt{3}+2}}\)
Tìm x,y \(\in Z\) sao cho\(\sqrt{y}+\sqrt{x}=\sqrt{2017}\)