Bài 4
CMR:1/2^2+1/3^2+...+1/2013^2<1
Bài 4
CMR:1/2^2+1/3^2+...+1/2013^2<1
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\)
\(=1-\frac{1}{2013}< 1\)( đpcm )
\(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
....
\(\frac{1}{2013^2}< \frac{1}{2012.2013}=\frac{1}{2012}-\frac{1}{2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}=1-\frac{1}{2013}< 1\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}\)
Ta thấy \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2013^2}\)\(< \frac{1}{2012.2013}\)
\(\Rightarrow A< B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\)
MÀ \(B=1-\) \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{2012}+\frac{1}{2012}-\frac{1}{2013}\)
\(=1-\frac{1}{2013}< 1\)
Mà A<B nên A<1(t/c)(đpcm)
Bài 1 : Tính tổng
a) 1 *2 *3 + 2 * 3 *4 + 3 * 4 * 5 + ... + 2013 * 2014 * 2015 + 2014 * 2015 * 2016
b) 1 * + 3 * 4 + 5 * 6 + ... + 99 * 100
Bài 2 : CMR : 1^3 + 2^3 + 3^3 + ... + n^3 = ( 1 + 2 + 3 + ... + n )^2
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{2013^2}\)
CMR B<\(\dfrac{3}{4}\)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2013^2}\)
Ta có ;
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
...
\(\dfrac{1}{2013^2}< \dfrac{1}{2012.2013}\)
\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2012.2013}\)
\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2013}\)
\(\Leftrightarrow B< 1-\dfrac{1}{2013}\)
\(\Rightarrow B< \dfrac{2012}{2013}\)
Lại có : \(\dfrac{2012}{2013}< \dfrac{3}{4}\)
\(\Rightarrow B< \dfrac{3}{4}\)
* Chắc vậy, sai thì thôg cảm ^^ *
Còn j k hiểu thì ib nha
CMR
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2013^2-1}+\sqrt{2013^2}}=2012\)
Xét số hạng tổng quát: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\) (do \(\sqrt{n+1}-\sqrt{n}>0\forall n\in\mathbb{N}\text{ nên ta có thể nhân liên hợp}\))
Áp dụng vào và ta có:
\(VT=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2013^2}-\sqrt{2013^2-1}\)
\(=\sqrt{2013^2}-1=2013-1=2012^{\left(đpcm\right)}\)
Bài 4
CMR:1/2^2+1/3^2+...+1/2013^2<1
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
....................
\(\dfrac{1}{2013^2}< \dfrac{1}{2012.2013}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+........+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{2012.2013}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{2013^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{2012}-\dfrac{1}{2013}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{2013^2}< 1-\dfrac{1}{2013}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+.....+\dfrac{1}{2013^2}< 1\left(đpcm\right)\)
Bài 4
CMR:1/2^2+1/3^2+...+1/2013^2<1
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{2013^2}\\ =\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{2013.2013}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}\\ -1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2012}-\dfrac{1}{2013}\\ =1-\dfrac{1}{2013}< 1\)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2012.2013}=1-\dfrac{1}{2}+\dfrac{1}{2}+....+\dfrac{1}{2012}-\dfrac{1}{2013}\)
\(\Rightarrow dpcm\)
CMR : 1/2!+2/3!+3/4! + ...+2013/2014! < 1
ủa, nó nhỏ hơn 1 mà sao bn lại ghi lớn hơn 1
\(\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{2013}{1.2...2014}\)
\(=\frac{1}{2}+\frac{1}{1.3}+\frac{1}{1.2.4}+...+\frac{1}{1.2...2012.2014}\)
\(=\frac{1.1.3.4...2012.2014}{2.1.3.4...2012.2014}+\frac{1.2.4.5...2012.2014}{1.3.2.4.5...2012.2014}+...+\frac{1}{1.2.....2012.2014}\)(Quy đồng mẫu)
\(=\frac{1.1.3.4...2012.2014+1.2.4.5...2012.2014+...+1}{1.2...2012.2014}>1\)
Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 1
Bài 2: CMR 1/3 + 2/3^2 Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 3/4
Bài 3: Cho A= 1/1*2 + 1/3*4 + 1/5*6 + .... + 1/99*100. CMR 7/12 < A < 5/6
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
CMR: 1/151+1/152+1/153+…+1/300=1-1/2+1/3-1/4+…+1/299-1/300
CMR:S=1/2+1/3+1/4+…1/2013