Cho \(\dfrac{a}{b}=\dfrac{c}{d}.C/m:\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho a+b+c+d ≠ 0 và \(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính giá trị biểu thức:
P = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
cho \(\dfrac{a}{b}\) =\(\dfrac{c}{d}\) cm rằng
a) \(\dfrac{a}{a-b}\) =\(\dfrac{c}{c-d}\) b)\(\dfrac{a}{b}\) =\(\dfrac{a+c}{b+d}\) c) \(\dfrac{a}{3a+d}\) =\(\dfrac{c}{3c+d}\) d)\(\dfrac{a.c}{b.d}\) =\(\dfrac{a^2+c^2}{b^2+c^2}\) e)\(\dfrac{a.b}{c.d}\) =\(\dfrac{a^2-b^2}{c^2-d^2}\) f)\(\dfrac{a.b}{c.d}\) =\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
mn giúp mk vs ạ! thanks
a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)
\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)
\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)
\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
1) \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2) \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3) \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4) \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Cho a+b+c+d khác 0 sao cho: \(\dfrac{b+c+d}{a}=\dfrac{a+c+d}{b}=\dfrac{b+a+d}{c}=\dfrac{c+b+a}{d}\)
Hãy tính: M = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}-\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}HãyCM:\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{bk}{b.\left(3k+1\right)}=\dfrac{k}{3k+1}\)(1)
\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{dk}{d.\left(3k+1\right)}=\dfrac{k}{3k+1}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\) (đpcm)
Chúc bạn học tốt!!!
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}.\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\left(1\right)\)
Thay (1) vào đề bài:
\(VT=\dfrac{a}{3a+b}=\dfrac{ck}{3ck+dk}=\dfrac{ck}{k\left(3c+d\right)}=\dfrac{c}{3c+d}\)
\(VP=\dfrac{c}{3c+d}=VT\)
\(\Leftrightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\rightarrowĐPCM.\)
\(\text{Đặt}\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left[{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\text{Ta có:}\)
\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{bk}{b\left(3k+1\right)}=\dfrac{k}{3k+1}\) \(\left(1\right)\)
\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{dk}{d\left(3k+1\right)}=\dfrac{k}{3k+1}\) \(\left(2\right)\)
\(Từ\) \(\left(1\right)\) \(và\) \(\left(2\right)\) \(suy\) \(ra:\)
\(\dfrac{a}{3a+b}=\dfrac{k}{3k+1}=\dfrac{c}{3c+d}\)
\(Vậy\) \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\) \(\left(ĐPCM\right)\)
CÁC BẠN GIÚP BẠN Heo Mách VỚI NHA!!!!!
1) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR(với giả thiết các tỉ số đều có nghĩa)
a)\(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
b)\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
c)\(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
d)\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
e)\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
b: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b}{d}\right)^2\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
c: \(\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{k-1}{k+1}\)
\(\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{k-1}{k+1}\)
Do đó: \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
Cho tỉ lệ thức \(\dfrac{3a+11b}{3a-11b}=\dfrac{3c+11d}{3c-11d}\) . Chứng minh rằng \(\dfrac{a}{b}=\dfrac{c}{d}\)
Cho a, b, c, d > 0. CMR \(\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\ge\dfrac{2}{3}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)
\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)
\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)
*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)