Tìm m để hàm số bậc nhất \(y=\dfrac{m^2-2013m+2012}{m^2-2\sqrt{2}m+3}x-2011\)
là hàm số nghịch biến
Tìm m để hàm số bậc nhất \(y=\dfrac{m^2-2013m+2012}{m^2-2\sqrt{2}m+3}x-2011\)
là hàm số nghịch biến
Bái 1: a) Tìm m để hàm số y = \(\sqrt{\dfrac{-1}{4m-2}x}+\dfrac{1}{7}\) là hàm số bậc nhất
b) Hàm số bậc nhất sau đồng biến hay nghịch biến, vì sao?
a) Hàm số: \(y=\sqrt{\dfrac{-1}{4m-2}}x+\dfrac{1}{7}\)
Là hàm số bậc nhất khi:
\(\dfrac{-1}{4m-2}>0\)
\(\Leftrightarrow4m-2< 0\)
\(\Leftrightarrow4m< 2\)
\(\Leftrightarrow m< \dfrac{4}{2}\)
\(\Leftrightarrow m< \dfrac{1}{2}\)
b) Ta có:
\(\sqrt{\dfrac{-1}{4m-2}}>0\forall m\ge\dfrac{1}{2}\)
Nên hệ số góc dương nên đây là hàm số bậc nhất đồng biến
Tìm m để hàm số bậc nhất: \(y=\frac{m^{^2}-2013m+2012x}{m^{^2}-2\sqrt{2}m+3}-2011\) là hàm số nghịch biến
\(y=\frac{2012}{m^2-2\sqrt{2}m+3}x-2011+\frac{m^2-2013m}{m^2-2\sqrt{2}m+3}\)
Hàm số đã cho nghịch biến khi và chỉ khi \(\frac{2012}{m^2-2\sqrt[]{2}m+3}< 0\)
\(\Leftrightarrow m^2-2\sqrt{2}m+3< 0\)
\(\Leftrightarrow\left(m-\sqrt{2}\right)^2+1< 0\) (vô nghiệm)
Vậy ko tồn tại m thỏa mãn
1) cho hàm số bậc nhất y=\(\sqrt{m-1}\) -6x+5 tìm m để hàm số đã cho là hàm số bậc nhất và nghịch biến
2) cho hàm số bậc nhất y=\(\left(m^2-m+1\right)x+m\) chứng minh với mọi giá trị của m,hàm số đã cho là hàm số bậc nhất và đồng biến
2: m^2-m+1
=m^2-m+1/4+3/4
=(m-1/2)^2+3/4>=3/4>0 với mọi m
=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R
Bài 1: Cho hàm số\(y=x\sqrt{m-1}-\dfrac{3}{2}\).Tìm giá trị của m sao cho hàm số trên là hàm số bậc nhất
Bài 2: Với giá trị nào của k thì:
a)Hàm số \(y=\left(k^2-5k-6\right)x-13\) đồng biến?
b)Hàm số \(y=\left(2k^2+3k-2\right)x+3\) nghịch biến?
Bài 3: Cho hai hàm số bậc nhất y = 2x + k và y = (2m + 1)x + 2k - 3. Tìm điều kiện đối với m và k để hai đồ thị hàm số là:
a)Hai đường thẳng cắt nhau
b)Hai đường thẳng song song với nhau
c)Hai đường thẳng trùng nhau
Bài 4: Cho đường thẳng (d): y = (m - 3)x + 1 - m. Xác định m trong các trường hợp sau đây:
a) (d) cắt trục Ox tại điểm A có hoành độ x = 2
b) (d) cắt trục tung Ox tại điểm B có tung độ y = -3
c) (d) đi qua điểm C(-1 ; 4)
\(y=\left(\sqrt{x}+1\right)^2+\left(m-1\right)\left(\sqrt{x}-1\right)^2-m\left(\sqrt{x}+3\right)\)
Tìm m để hàm số sau là hàm số bậc nhất. Khi đó hàm số là đồng biến hay nghịch biến?
Cho hàm số: y = ( m + 3 )x + m - 2
a) Tim m để y là hàm số bậc nhất
b) Tìm m để y là hàm số nghịch biến
c) Tìm m để hàm số trên đồng biến
) Điều kiện để hàm số xác định là m≥0m≥0; x∈Rx∈R
Để hàm số đã cho là hàm bậc nhất thì m√+3√m√+5√≠0m+3m+5≠0
Vì m−−√+3–√≥0+3–√>0m+3≥0+3>0 với mọi m≥0m≥0 nên m−−√+3–√≠0,∀m≥0m+3≠0,∀m≥0
⇒m√+3√m√+5√≠0⇒m+3m+5≠0 với mọi m≥0m≥0
Vậy hàm số là hàm bậc nhất với mọi m≥0m≥0
b)
Để hàm đã cho nghịch biến thì m√+3√m√+5√<0m+3m+5<0
Điều này hoàn toàn vô lý do {m−−√+3–√≥3–√>0m−−√+5–√≥5–√>0{m+3≥3>0m+5≥5>0
Vậy không tồn tại mm để hàm số đã cho nghịch biến trên R
Giải thích các bước giải:
câu c đâu rui bạn oi
a; 1 số < hoặc =2 b;PT<0 rồi giải c;PT>0 rồi giải
cho hàm số y = ( 1-m2)x+2
a. tìm m để hàm số là hàm số bậc nhất
b. tìm m để hàm số là hàm số nghịch biến, đồng biến
Lời giải:
Để hàm số là hàm bậc nhất thì $1-m^2\neq 0$
$\Leftrightarrow m^2\neq 1\Leftrightarrow m\neq \pm 1$
b.
Để hàm nghịch biến thì $1-m^2<0$
$\Leftrightarrow (1-m)(1+m)<0$
$\Leftrightarrow m> 1$ hoặc $m< -1$
Để hàm đồng biến thì $1-m^2>0$
$\Leftrightarrow (1-m)(1+m)>0$
$\Leftrightarrow -1< m< 1$
Câu 1: cho hàm số y=\(\dfrac{\sqrt{m}+3}{\sqrt{m}-2}x-10\)
a,tìm x để hàm số trên là hàm số bậc nhất
b, tìm m để hàm số trên đồng biến trên R
a: Để hàm số trên là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge0\\m\ne4\end{matrix}\right.\)
b: Để hàm số đồng biến thì \(\sqrt{m}-2>0\)
hay m>4