Lời giải:
Để hàm số đã cho là hàm nghịch biến thì với \(x_1> x_2\in\mathbb{R}\) thì \(y(x_1)< y(x_2)\)
\(\Leftrightarrow \frac{m^2-2013m+2012}{m^2-2\sqrt{2}m+3}x_1-2011< \frac{m^2-2013m+2012}{m^2-2\sqrt{2}m+3}x_2-2011\)
\(\Leftrightarrow \frac{m^2-2013m+2012}{m^2-2\sqrt{2}m+3}(x_1-x_2)< 0\)
\(\Leftrightarrow \frac{m^2-2013m+2012}{m^2-2\sqrt{2}m+3}< 0\) (do \(x_1-x_2> 0\) )
\(\Leftrightarrow \frac{(m-1)(m-2012)}{(m-\sqrt{2})^2+1}< 0\)
\(\Leftrightarrow (m-1)(m-2012)< 0\)
\(\Leftrightarrow 1< m< 2012\)