Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê bảo tú
Xem chi tiết
Gấuu
10 tháng 8 2023 lúc 12:39

\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)

\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)

\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)

\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)

\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)

\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)

\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)

\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)

Nguyễn Thị Phương Duyên
Xem chi tiết
Akai Haruma
29 tháng 10 lúc 23:53

Đa thức không phân tích được thành nhân tử bạn nhé. 

Trung
Xem chi tiết
Khánh Huyền
Xem chi tiết
Ko Quan Tâm
11 tháng 2 2016 lúc 16:20

ủng hộ mình lên 220 nha các bạn

đanglinh
Xem chi tiết
TRỊNH THỊ HỒNG SEN
Xem chi tiết
Phùng Thị Thanh Thảo
27 tháng 4 2020 lúc 11:39

1.=[(1/2)a^2)^2-2.(1/2)a^2b+b^2
=[(1/2)a^2-b]^2
2.=2a^2+2b^2-2-a^2c+c-b^2c
=2(a^2+b^2-a)-c(a^2+b^2-1)
=(2-c)(a^2+b^2-1)

Khách vãng lai đã xóa
Bui Thi Thu Phuong
Xem chi tiết
Thắng Nguyễn
2 tháng 9 2016 lúc 6:27

2a2b2+2b2c2+2a2c2-a4-b4-c4

=4a2c2-(a4+b4+c4-2a2b2+2a2c2-2b2c2)

=4a2c2-(a2-b2+c2)2

=(2ac+a2-b2+c2)(2ac-a2+b2-c2)

=[(a+c)2-b2][b2-(a-c)2]

=(a+b+c)(a+c-b)(b+a-c)(b-a+c)

Steolla
2 tháng 9 2017 lúc 10:07

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

♡ℌà ɮảø Ťʉệ♡
23 tháng 5 2020 lúc 17:57

ko bik

Khách vãng lai đã xóa
nguyễn hoàng long
Xem chi tiết
Kiều Vũ Linh
30 tháng 10 2023 lúc 10:19

\(\left(a+b\right)^2-\left(a-2b\right)^2\)

\(=\left[\left(a+b\right)+\left(a-2b\right)\right]\left[\left(a+b\right)-\left(a-2b\right)\right]\)

\(=\left(a+b+a-2b\right)\left(a+b-a+2b\right)\)

\(=\left(2a-b\right).3b\)

\(=3b.\left(2a-b\right)\)

hoangtuvi
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 13:09

a: Ta có: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)

\(=\left[\left(a-b\right)^2-9\right]\cdot\left[\left(a+b\right)^2-1\right]\)

\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)