Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pham minh quang
Xem chi tiết
Đỗ Phân Tuấn Phát
22 tháng 3 2017 lúc 19:26

Hello Cúp Bơ Quang, ta là Phát đây. Mi bí bài đó hả, ta cũng chẳng biết.

Đỗ Cao Minh Thiên
Xem chi tiết
Phạm Minh Tú
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 21:58

\(1,8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)

\(2,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\\ A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\\ A=3\left(2+2^3+...+2^{119}\right)⋮3\)

\(A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{118}\right)=7\left(2+...+2^{118}\right)⋮7\\ A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{117}+2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2+2^3\right)+...+2^{117}\left(1+2+2^2+2^3\right)\\ A=\left(1+2+2^2+2^3\right)\left(2+...+2^{117}\right)=15\left(2+...+2^{117}\right)⋮15\)

Phạm Minh Tú
19 tháng 12 2021 lúc 21:50

Mọi người giải giúp em với ạ. Em đang cần gấp !!!

Nguyễn Thùy Linh
Xem chi tiết
Duc Loi
7 tháng 4 2019 lúc 10:18

Sai đề rồi.

Đề phải là: \(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

Giải như sau: 

\(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\left(đpcm\right).\)

Quỳnh Giang Bùi
Xem chi tiết
Kudo Shinichi
25 tháng 12 2014 lúc 22:12
1\20 + 1\40 = 60\20.40 > 60\30^2 (do 30^2 > 30^2-10^2)
tương tự ta có:
1\21 + 1\39 > 60\30^2
1\22 + 1\38 > 60\30^2
........
1\29 + 1\31 > 60\30^2
=> S > 10.60\30^2 + 1\30 -1\20
=> S > 20\30 + 1\30 -1\20 > 7\12

lại có:
1\21+..+1\25 < 5\21
1\26+..+1\30 < 5\26
....
1\36+..+1\40 < 5\36
=> S < 5\21 + 5\26 + 5\31 + 5\36
=> S < 5.(1\21 + 1\24 + 1\30 + 1\36)
=> S < 5\3.(1\7 + 1\8 + 1\10 + 1\12)
do 1\7 + 1\10 +1\12 < 3\8
=> S < 5\3.(4\8) = 5\6
(cm S > 7\12 gần như adụng cosi ở phổ thông... 1\a + 1\(n-a) >= 2\(a.(n-a)
.......... .
bạn trang L mắc sai lầm nghiêm trọng....
1\21 +..+1\40 < 1\21 +..+1\21 = 20\21 chứ không phải lớn hơn...
bời vì 1\(21+a) < 1\21 với mọi a>0
tương tự S >1\2 chứ không phải < 1\2
để ktra lại rất đơn giản... theo bạn Trang L ta có:
7\12 < 20\21 < S < 1\2 < 5\6
điều này hoàn toàn vô lý với nền toán học thế giới hiện nay
nói cách khác.. theo Trang L ta có:
.. S > 20\21 mà 20\21 > 5\6 => S >5\6 vậy kết luận S < 5\6 kiểu gì đây....?
........ .....
(nhìn bạn Trang L giải tôi cũng tý bị nhầm... nhưng chú ý hơn mới thấy đc bạn ấy bị nhầm BDT, a> b => 1\a < 1\b chư không phải 1\a>1\b)
hương giang
Xem chi tiết
Sherlockichi Kudoyle
16 tháng 7 2016 lúc 14:39

\(10^9+10^8+10^7=10^6.10^3+10^6.10^2+10^6.10=10^6\left(1000+100+10\right)=10^6.1110\)

                                     \(=10^6.222.5\) (ĐPCM)

\(S=2^2.1+2^2.2^2+2^2.3^2+....+2^2.10^2\)

\(S=2^2.\left(1^2+2^2+3^2+...+10^2\right)\)

\(S=4.385=1540\)

kakaruto ff
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2023 lúc 20:29

1: Xét ΔABC có

BD,CE là trung tuyến

BD cắt CE tại G

=>G là trọng tâm

=>GD=1/3BD và GE=1/3CE

mà BD=CE

nên GD=GE

=>GB=GC

2: Xét ΔGBE và ΔGCD có

GB=GC

góc BGE=góc CGD

GE=GD

=>ΔGBE=ΔGCD

3: ΔGBE=ΔGCD

=>BE=CD

=>AB=AC

=>ΔBAC cân tại A

Hien Pham
Xem chi tiết
kakaruto ff
Xem chi tiết

1: Xét tứ giác OAEI có \(\widehat{OAI}+\widehat{OEI}=90^0+90^0=180^0\)

nên OAEI là tứ giác nội tiếp

Xét tứ giác OEBK có \(\widehat{OEK}=\widehat{OBK}=90^0\)

nên OEBK là tứ giác nội tiếp

2: Ta có: OAEI là tứ giác nội tiếp

=>\(\widehat{OIE}=\widehat{OAE}=\widehat{OAB}\left(1\right)\)

Ta có: OEBK là tứ giác nội tiếp

=>\(\widehat{OKE}=\widehat{OBE}=\widehat{OBA}\left(2\right)\)

Ta có: ΔOAB cân tại O

=>\(\widehat{OAB}=\widehat{OBA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{OIE}=\widehat{OKE}\)

=>\(\widehat{OIK}=\widehat{OKI}\)

=>ΔOKI cân tại O

3: Xét ΔOAI vuông tại A và ΔOBK vuông tại B có

OA=OB

OI=OK

Do đó: ΔOAI=ΔOBK

=>AI=BK

4: Xét tứ giác OACB có \(\widehat{OAC}+\widehat{OBC}=90^0+90^0=180^0\)

nên OACB là tứ giác nội tiếp

=>\(\widehat{OAB}=\widehat{OCB}\)

mà \(\widehat{OAB}=\widehat{OIK}\)

nên \(\widehat{OIK}=\widehat{OCK}\)

=>OICK là tứ giác nội tiếp