Bài 1 :Tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố :
a) p + 2 và p + 10
b) p + 6 ; p + 8 ; p +12 ; p +14
Bài 2 : Tìm số tự nhiên sao cho :
a) n + 3 chia hết cho n - 1 .
b) 4n + 3 chia hết cho 2n + 1 .
bài 1: cho n>2 và không chia hết cho 3 . cmr hai số n^2-1 và n^2+1 không thể đồng thời là số nguyên tố
bài 2:tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố
câu a) p+2 và p+10
câu b) p+10 và p+20
câu c)p+2,p+6,p+8.p+12,p+14
bài 3tìm 4 số nguyên tố liên tiếp sao cho tổng của chúng cũng là số nguyên tố
bài 4:tìm 2 số tự nhiên sao cho tổng và tích của chúng cũng là số nguyên tố
Bài 2 : c)
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.
Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp :
- Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !
Bài1:Các số sau là nguyên tố hay hợp số
a) 123456789 + 729
b) 5.7.8.9.11-132
Bài 2: Tìm số nguyên tố sao cho
a)P+2 và P+4 cũng là số nguyên tố
b)P+10 và P+14 cũng là số nguyên tố
Bài 1 :
a) \(123456789+729=\text{123457518}⋮2\)
⇒ Số trên là hợp số
b)\(5.7.8.9.11-132=\text{27588}⋮2\)
⇒ Số trên là hợp số
Bài 2 :
a) \(P+2\&P+4\) ;à số nguyên tố
\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)
\(\Rightarrow P=-3\)
Câu b tương tự
a,123456789+729=123457518(hợp số)
b,5x7x8x9x11-132=27588(hợp số)
Bài 2,
a,Nếu P=2=>p+2=4 và p+4=6 (loại)
Nếu P=3=>p+2=5 và p+4=7(t/m)
P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)
Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)
Nếu p=3k+2=>p+4=3k+6⋮3(loại)
Vậy p=3 thỏa mãn đề bài
b,Nếu p=2=>p+10=12 và p+14=16(loại)
Nếu p=3=>p+10=13 và p+14=17(t/m)
Nếu p >3=>p có dạng 3k+1 hoặc 3k+2
Nếu p=3k+1=>p+14=3k+15⋮3(loại)
Nếu p=3k+2=>p+10=3k+12⋮3(loại)
Vậy p=3 thỏa mãn đề bài.
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 3:
a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố
p + 8 = 2 + 8 = 10 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố
p + 8 = 3 + 8 = 11 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố
p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p > 3 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất
1. Tìm các số nguyên tố sao cho các số sau đây cũng là số nguyên tố:
a. p+2 và p+10
b. p+10 và p+20
c. p+2 , p+6 , p+8 , p+12 , p+14
2. Tổng của 3 số nguyên tố là 1012, tìm số nhỏ nhất trong ba số nguyên tố đó.
3. Tổng sau là số nguyên tố hay hợp số? Vì sao?
2 * 3 * 5 * 7 * 11 + 13 * 17 * 19 * 21
4. Tìm số tự nhiên n sao cho n+8 chia hết cho n+1
5. Tìm số nguyên tố a để 4*a+11 là số nguyên tố <30
6.Tìm các số tự nhiên x,y sao cho:
(2x+1) .(y-3)
Ccá bạn làm cả bài giải giúp mình nha, mình phải có trước tôi thứ hai, thông cảm, bài nhiều là do thầy mình, mình hứa sẽ bám đúng, thề danh dự
1.
a) p = 1
b) p = 1
c) p = 1
3.
là hợp số . Vì 2*3*5*7*11+13*17*19*21 = 90489
đăng từng bài 1 thôi nhiều quá ngất xỉu luôn.
thì có ai kêu là tra loi gium dau
1) Tìm a,b Thuộc N sao cho a + b và a.b là số nguyên tố
2) Tìm số nguyên tố P sao cho các số sau cũng là số nguyên tố
a) P + 2 và P + 10
b) P + 10 và P + 20
c) P + 2 , P + 6 , P + 8 , P + 12 , P +14
Có ghi rõ cách làm nha
Bài 1: Tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố:
a) p + 2, p + 6, p + 8, p + 14.
b) p + 6, p + 8, p + 12, p + 14.
c) p + 4, p + 6, p + 10, p + 12, p+16, p+22.
Bài 2: Chứng minh rằng mọi ước số nguyên tố của: 2018! – 1 đều lớn hơn 2018.
Bài 3: Tìm tất cả các số nguyên tố x, y sao cho: x2 – 6y2 = 1.
Bài 4: Tìm p, q là các số nguyên tố sao cho: p2 = 8q + 1
Bài 5: Cho p là số nguyên tố. Chứng minh rằng (p-1)! không chia hết cho p.
bây giờ mới lên lớp 6 mà tự nhiên cho bài lớp 7
DỄ MÀ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Bài 4. Phân tích các số sau thành tích các thừa số nguyên tố: 2016; 150; 165; 2020.
Bài 5. Diện tích của một hình chữ nhật là 165 cm2. Tìm tất cả các giá trị chiều dài và chiều rộng có thể có của hcn đó.
Bài 6. A là một số nguyên tố. A + 6, A+ 8, A + 12, A + 14 cũng là số nguyên tố. Tìm A.
Bài 7. Tổng của hai số nguyên tố là 50. tìm tích lớn nhất có thể có của hai số nguyên tố đó.
Bài 8. Tìm số nguyên tố P sao cho P + 2, P + 4 cũng là các số nguyên tố.
1. Tìm số nguyên tố p , sao cho các số sau cũng là số nguyên tố :
a,p+2 và p+10
b,p+10 và p+20
2.Cho 3 số nguyên tố lớn hơn 3 , trong đó số sau lớn hơn số trước là d đơn vị . Chứng minh rằng d chia hết cho 6.
3.Cho p và p+4 là các số nguyên tố (p>3) . Chứng minh ằng p+8 là hợp số
4.Cho p và 8p-1 là các số nguyên tố . Chứng minh rằng 8p+1 là hợp số
Câu 1:
a: p=3 thì 3+2=5 và 3+10=13(nhận)
p=3k+1 thì p+2=3k+3(loại)
p=3k+2 thì p+10=3k+12(loại)
b: p=3 thì p+10=13 và p+20=23(nhận)
p=3k+1 thì p+20=3k+21(loại)
p=3k+2 thì p+10=3k+12(loại)
2.
p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
Bài 18: Hãy so sánh 20152015 - 20152014 và 20152016 - 20152015
Bài 21: Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố
Bài 22: Tìm số nguyên tố p, sao cho p+1 và p+3 cũng là các số nguyên tố
Bài 18:
Ta có:
\(2015^{2015}-2015^{2014}=2015^{2014}\cdot\left(2015-1\right)=2015^{2014}\cdot2014\)
\(2015^{2016}-2015^{2015}=2015^{2015}\cdot\left(2015-1\right)=2015^{2015}\cdot2014\)
Mà: \(2014< 2015\)
\(\Rightarrow2015^{2014}< 2015^{2015}\)
\(\Rightarrow2015^{2014}\cdot2014< 2015^{2015}\cdot2014\)
\(\Rightarrow2015^{2015}-2015^{2014}< 2015^{2016}-2015^{2015}\)
Vậy: ...
a . Tìm các số nguyên tố p sao cho p + 11 cũng là số nguyên tố .
b . Tìm các số nguyên tố p sao cho p + 8 và p + 10 cũng là số nguyên tố .