Cho hàm số y = (2m - 3)x - 1 với (m#1/3) (d)
a) Tìm m để hs đồng biến
b) tìm m để (d) đi qua E ( -2; -3) . Vẽ ĐTHS với m vừa tìm được
c) Tìm m sao cho khoảng cách từ gốc toạ độ đến (d) = \(\dfrac{1}{\sqrt{5}}\)
Cho các hàm số: y = (m - 1)x + 2m – 5 (1)
y = (3 – 2m)x + m – 8 (2)
Tìm m để góc tạo bởi đồ thị hàm số (1) với Ox là
60o
. Tìm m để góc tạo bởi đồ thị hàm số (2) với Ox là
120o
.
Ta có : tg60=m-1
\({\sqrt{3}=m-1} \) \(->m=\sqrt{3} +1\)
\(tan120=3-2m <=> -\sqrt{3}=3-2m \)
m=\(\frac{3+\sqrt{3}}{2}\)
1.Cho hàm số y=(m−2m+3m−2m+3)x-2
a.Tìm m để hàm số trên là hàm sô bậc nhất.
b.Tìm m để hàm số trên là đồng biến.
2.Vẽ đô thị hàm số y=-x +3 và y=2x+1 trên cùng 1 hệ trục tọa độ.
Trả lời giúp mình với ạ!Mình cảm ơn!
Bài 1:
a. $y=(m-2m+3m-2m+3)x-2=3x-2$
Vì $3\neq 0$ nên hàm này là hàm bậc nhất với mọi $m\in\mathbb{R}$
b. Vì $3>0$ nên hàm này là hàm đồng biến với mọi $m\in\mathbb{R}$
Bài 2:
Đồ thị xanh lá cây: $y=-x+3$
Đồ thị xanh nước biển: $y=2x+1$
Bài 9. Cho hàm số y = (2m- 3) x -1 (1). Tìm m để: a)Hàm số (1) là hàm số bậc nhất b)Hàm số (1) là hàm số bậc nhất đồng biến, nghịch biến c)Hàm số (1) đi qua điểm (-2; -3) d)Đồ thị của (1) là 1 đường thẳng // với đt y = (-m+ 2) x + 2m e)Đồ thị của (1) đồng quy với 2 đt y = 2x - 4 và y = x +1 f)Khoảng cách từ gốc tọa độ đến đường thẳng (1) bằng 1 5
a: Để hàm số là hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
b: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
Để hàm số nghịch biến thì 2m-3<0
hay m<3/2
Cho hàm số: y=(1-2m)x+3 (d)
a) Với giá trị nào của m thì hàm số đã cho là hàm số nghịch biến.
b) Tìm m biết đồ thị hàm số đi qua A(-1;4) và vẽ đồ thị hàm số trong trường hợp này.
c) Với giá trị nào của m thì (d):y=(1-2m)x+3 tạo với các trục tọa độ thành tam giác có diện tích bằng 1.
Cho hàm số y=(2m+3)x-2m+5 ( với m là tham số và m ≠-1,5) có đồ thị hàm số là đường thẳng (d)
a.tìm m để hàm số trên nghịch biến
b. tìm m để (d) song song với đường thẳng (d1):y=(3m-2)x+1
c.tìm m để (d) cắt đường thẳng (d2):y=3x-1 tại một điểm có tung độ bằng 5
d.tìm m để (d) ctaws trục Ox ,Oy tại 2 điểm A và B sao cho diện tích tam giác AOB bằng 1
a: Để hàm số y=(2m+3)x-2m+5 nghịch biến trên R thì 2m+3<0
=>2m<-3
=>\(m< -\dfrac{3}{2}\)
b: Để (d)//(d1) thì
\(\left\{{}\begin{matrix}2m+3=3m-2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-m=-5\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=5\\m\ne2\end{matrix}\right.\)
=>m=5
c: Thay y=5 vào y=3x-1, ta được:
3x-1=5
=>3x=6
=>x=6/3=2
Thay x=2 và y=5 vào (d), ta được:
\(2\left(2m+3\right)-2m+5=5\)
=>\(4m+6-2m+5=5\)
=>2m+11=5
=>2m=-6
=>m=-6/2=-3
d: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m+3\right)x-2m+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(2m+3\right)=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-5}{2m+3}\end{matrix}\right.\)
=>\(A\left(\dfrac{2m-5}{2m+3};0\right)\)
\(OA=\sqrt{\left(\dfrac{2m-5}{2m+3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2m-5}{2m+3}\right)^2}=\left|\dfrac{2m-5}{2m+3}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x\left(2m+3\right)-2m+5=0\left(2m+3\right)-2m+5=-2m+5\end{matrix}\right.\)
=>\(B\left(-2m+5;0\right)\)
\(OB=\sqrt{\left(-2m+5-0\right)^2+\left(0-0\right)^2}\)
\(=\sqrt{\left(-2m+5\right)^2}=\left|2m-5\right|\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|2m-5\right|\cdot\dfrac{\left|2m-5\right|}{\left|2m+3\right|}\)
\(=\dfrac{1}{2}\cdot\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}\)
Để \(S_{AOB}=1\) thì \(\dfrac{\dfrac{1}{2}\left(2m-5\right)^2}{\left|2m+3\right|}=1\)
=>\(\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}=2\)
=>\(\left(2m-5\right)^2=2\left|2m+3\right|\)
=>\(\left(2m-5\right)^2=2\left(2m+3\right)\)
=>\(4m^2-20m+25-4m-6=0\)
=>\(4m^2-24m+19=0\)
=>\(m=\dfrac{6\pm\sqrt{17}}{2}\)
Bài 14. Cho hàm số bậc nhất y= (2m -1)x +m+1 (x là biến số).
Tim m để
1) Đồ thị hàm số song song với đường thẳng y= -5x +1.
2) Đồ thị hàm số đi qua điểm A(1; 3).
1: Để hai đường thẳng song song thì 2m-1=-5
hay m=-2
cho hàm số: \(y=\left(2m-1\right)x+n\) với \(\left(m\ne\dfrac{1}{2}\right)\)
Tìm giá trị của m, n biết n=2m và đồ thị hàm số \(y=\left(2m-1\right)x+n\) cắt đồ thị hàm số \(y=\dfrac{1}{2}x-4\) tại một điểm trên trục tung
Vì hai đồ thị cắt nhau tại một điểm trên trục tung nên n=-4
=>m=-2
Cho hàm số y = \(\sqrt{\left(m+1\right)x+2m+3}\) với tham số m. Có bao nhiêu giá trị nguyên của m để hàm số xác định trên đoạn [-3 ; -1]
\(\Leftrightarrow\left(m+1\right)x\ge-2m-3\)
- Với \(m=-1\) thỏa mãn
- Với \(m>-1\Rightarrow x\ge\dfrac{-2m-3}{m+1}\)
\(\Rightarrow\dfrac{-2m-3}{m+1}\le-3\) \(\Leftrightarrow\dfrac{2m+3}{m+1}-3\ge0\Leftrightarrow\dfrac{-m}{m+1}\ge0\)
\(\Rightarrow-1< m\le0\Rightarrow m=0\)
- Với \(m< -1\Rightarrow x\le\dfrac{-2m-3}{m+1}\Rightarrow\dfrac{-2m-3}{m+1}\ge-1\)
\(\Rightarrow\dfrac{2m+3}{m+1}-1\le0\Leftrightarrow\dfrac{m+2}{m+1}\le0\)
\(\Rightarrow-2\le m< -1\Rightarrow m=-2\)
Vậy \(m=\left\{-2;-1;0\right\}\)
Cho hàm số bậc nhất y=(m-3).x+2m-1 ( với m là tham số và m khác 3 ) . Tìm m để đồ thị hàm số song song với đường thăg y=-2x+5
Để
thì \(\hept{\begin{cases}m-3=-2\\2m-1\ne5\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\\m\ne3\end{cases}}\)
Vậy để đồ thị hàm số y=(m-3).x+2m-1 song song với đồ thị hàm số y=-2x+5 thì m=1
cho hàm số bậc nhất y=(m+1).x+2m-1 và y=(2m-3).x+3m-6 .chứng minh đường thẳng luôn đi qua 1 điểm cố định với mọi m