cho x,y,z là 3 số thực dương thỏa mản xyz=1. CMR\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\) < 1
chờ x,y,z là các số thực dương thỏa mãn xyz=1.CMR
\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le1\)
Ta chứng minh
\(a+b\ge\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)
\(\Leftrightarrow\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^2\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\ge0\)(đúng )
Áp đụng vào bài toán ta được
\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
\(\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)+1}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1}+\frac{1}{\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+1}\)
\(=\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)
Giải:
Đặt \(x=a^3;y=b^3;z=c^3\left(abc=1\right)\) ta có:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\) do \(a+b>0\) và \(a^2+b^2-ab\ge ab\)
\(\Rightarrow a^3+b^3+1\ge\left(a+b\right)ab+abc=ab\left(a+b+c\right)>0\)
\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự ta có:
\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)}\)
\(\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)
Cộng theo vế ta có:
\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)
\(\le\frac{1}{\left(a+b+c\right)}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{\left(a+b+c\right)}\left(c+a+b\right)=1\)
Dấu "=" xảy ra khi x = y = z = 1
Cho x,y,z là các số thực dương thỏa mã: xyz=1
CMR:
\(\frac{1-x}{x+1}+\frac{1-y}{y+2}+\frac{1-z}{z+2}\le0\)0
Cho x,y,z là các số thực dương thỏa mãn:
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=1\)
CMR \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\)
Đặt \(\frac{1}{1+x}=a\);\(\frac{1}{1+y}=b\);\(\frac{1}{1+y}=c\). Lúc đó a + b + c = 1
Ta có: \(a=\frac{1}{1+x}\Rightarrow x=\frac{1-a}{a}=\frac{\left(a+b+c\right)-a}{a}=\frac{b+c}{a}\)(Do a + b + c = 1)
Tương tự ta có: \(y=\frac{c+a}{b};z=\frac{a+b}{c}\)
\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\Leftrightarrow\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{xy}}\le\frac{3}{2}\)
Ta đi chứng minh \(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)\(\le\frac{3}{2}\)
\(VT\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}\right)\)
\(=\frac{1}{2}.3=\frac{3}{2}\)*đúng*
Vậy \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\)
Đẳng thức xảy ra khi x = y = z = 2
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=xyz
cmr \(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\frac{xz}{y^3\left(1+x\right)\left(1+z\right)}\ge\frac{1}{16}\)
Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\) thì có
\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(a+1\right)\left(c+1\right)}+\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{16}\)\(\forall\hept{\begin{cases}a+b+c=1\\a,b,c>0\end{cases}}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{64}+\frac{c+1}{64}\ge\frac{3a}{16}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế
\(VT+\frac{2\left(a+b+c+3\right)}{64}\ge\frac{3\left(a+b+c\right)}{16}\Leftrightarrow VT\ge\frac{1}{16}\)
Khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
cho x,y,z là các số thực dương thỏa x+y+z=4 CMR
\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4zx}+\frac{1}{z^2+4xy}< \frac{1}{xyz}\)
Áp dụng BĐT AM-GM ta có: \(\frac{x^2+4yz}{2}\ge2x\sqrt{yz}\)
\(\Rightarrow\frac{2}{x^2+4yz}\le\frac{1}{2x\sqrt{yz}}\Rightarrow\frac{1}{x^2+4yz}\le\frac{1}{4x\sqrt{yz}}\)
Cộng theo vế ta có:
\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}\le\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\)
Cần chứng minh \(\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\le\frac{1}{xyz}\)
Nhân 2 vế với \(xyz\) ta lại được BĐT cần c/m tương đương với:
\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le1\)
Áp dụng BĐT AM-GM lần nữa ta có:
\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{1}{4}\left(x+y+z\right)=1\) (Đúng)
Vậy BĐT đầu đã được c/m
Theo đề ta có : x > 0\(\Rightarrow x^2+4yz>4yz\)
\(\Rightarrow\frac{1}{x^2+4yz}< \frac{1}{4yz}\) (1)
Chứng minh tương tự :\(\frac{1}{y^2+4xz}< \frac{1}{4xz}\) (2)
\(\frac{1}{z^2+4xy}< \frac{1}{4xy}\) (3)
Cộng (1),(2) và (3) vế theo vế ,ta được :
\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}< \frac{1}{4}\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)=\frac{1}{4}\times\frac{x+y+z}{xyz}=\frac{1}{xyz}\)
Vậy \(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}< \frac{1}{xyz}\)
cho x,y,z là các số thực dương thỏa mãn xy+yz+xz=xyz(x+y+z)
CMR \(\frac{1}{2x+1}+\frac{1}{2y+1}+\frac{1}{2z+1}\ge1\)
Cho x,y,z là số thực dương t/m x+y+z=xyz
CMR \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)
Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))
làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)
vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)
[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)
dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)
Cho x,y,z là các số thực dương thỏa mã: xyz=1
CMR:
\(\frac{1-x}{x+1}+\frac{1-y}{y+2}+\frac{1-z}{z+2}\le0\)
Cho các số thực dương x,y,z thỏa mãn xyz = 1.
CMR: \(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
Áp dụng BĐT Cô - si cho 3 số không âm:
\(1+x^3+y^3\ge3\sqrt[3]{1.x^3y^3}=3xy\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3}}{\sqrt{xy}}\)
Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3}}{\sqrt{zx}}\)
Cộng các vế của các BĐT trên, ta được:
\(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge\)\(\frac{\sqrt{3}}{\sqrt{xy}}\)\(+\frac{\sqrt{3}}{\sqrt{yz}}\)\(+\frac{\sqrt{3}}{\sqrt{zx}}\)
Tiếp tục áp dụng Cô - si:
\(BĐT\ge3\sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}.\frac{\sqrt{3}}{\sqrt{yz}}.\frac{\sqrt{3}}{\sqrt{zx}}}=3\sqrt{3}\)
Vậy \(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
\(x^3+y^3+1=x^3+y^3+xyz\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
Tương tự:
\(y^3+z^3+1\ge yz\left(x+y+z\right);z^3+x^3+1\ge zx\left(x+y+z\right)\)
\(\Rightarrow VT\ge\frac{\sqrt{xy\left(x+y+z\right)}}{xy}+\frac{\sqrt{yz\left(x+y+z\right)}}{yz}+\frac{\sqrt{zx\left(x+y+z\right)}}{zx}\)
\(=\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)
\(\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\frac{1}{\sqrt{xy}\cdot\sqrt{yz}\cdot\sqrt{zx}}}=3\sqrt{3}\)
Dấu "=" xảy ra tại \(x=y=z=1\)