Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chiến Nguyễn Minh
Xem chi tiết
alibaba nguyễn
27 tháng 3 2017 lúc 18:59

Ta chứng minh

\(a+b\ge\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)

\(\Leftrightarrow\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^2\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\ge0\)(đúng )

Áp đụng vào bài toán ta được

\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)

\(\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)+1}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1}+\frac{1}{\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+1}\)
\(=\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)

Hoàng Phúc
27 tháng 3 2017 lúc 21:30

đặt x=a/b , y=b/c , z=c/a 

Lãng Tử Hào Hoa
28 tháng 3 2017 lúc 13:14

Giải:

Đặt \(x=a^3;y=b^3;z=c^3\left(abc=1\right)\) ta có:

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\) do \(a+b>0\) và \(a^2+b^2-ab\ge ab\)

\(\Rightarrow a^3+b^3+1\ge\left(a+b\right)ab+abc=ab\left(a+b+c\right)>0\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự ta có:

\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)}\)

\(\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng theo vế ta có:

\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)

\(\le\frac{1}{\left(a+b+c\right)}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{\left(a+b+c\right)}\left(c+a+b\right)=1\)

Dấu "=" xảy ra khi x = y = z = 1

Hiền Nguyễn Thị
Xem chi tiết
Trân Vũ Mai Ngọc
Xem chi tiết
Kiệt Nguyễn
28 tháng 4 2020 lúc 10:42

Đặt \(\frac{1}{1+x}=a\);\(\frac{1}{1+y}=b\);\(\frac{1}{1+y}=c\). Lúc đó a + b + c = 1

Ta có: \(a=\frac{1}{1+x}\Rightarrow x=\frac{1-a}{a}=\frac{\left(a+b+c\right)-a}{a}=\frac{b+c}{a}\)(Do a + b + c = 1)

Tương tự ta có: \(y=\frac{c+a}{b};z=\frac{a+b}{c}\)

\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\Leftrightarrow\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{xy}}\le\frac{3}{2}\)

Ta đi chứng minh \(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)\(\le\frac{3}{2}\)

\(VT\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}\right)\)

\(=\frac{1}{2}.3=\frac{3}{2}\)*đúng*

Vậy \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\)

Đẳng thức xảy ra khi x = y = z = 2

Khách vãng lai đã xóa
Lyzimi
Xem chi tiết
Thắng Nguyễn
27 tháng 8 2017 lúc 9:35

Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\) thì có

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(a+1\right)\left(c+1\right)}+\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{16}\)\(\forall\hept{\begin{cases}a+b+c=1\\a,b,c>0\end{cases}}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{64}+\frac{c+1}{64}\ge\frac{3a}{16}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế

\(VT+\frac{2\left(a+b+c+3\right)}{64}\ge\frac{3\left(a+b+c\right)}{16}\Leftrightarrow VT\ge\frac{1}{16}\)

Khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=1\)

BaBie
24 tháng 8 2017 lúc 15:12

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Lyzimi
24 tháng 8 2017 lúc 16:10

BaBie làm cái chi đây 

lê thị tiều thư
Xem chi tiết
Lightning Farron
25 tháng 2 2017 lúc 22:02

Áp dụng BĐT AM-GM ta có: \(\frac{x^2+4yz}{2}\ge2x\sqrt{yz}\)

\(\Rightarrow\frac{2}{x^2+4yz}\le\frac{1}{2x\sqrt{yz}}\Rightarrow\frac{1}{x^2+4yz}\le\frac{1}{4x\sqrt{yz}}\)

Cộng theo vế ta có:

\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}\le\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\)

Cần chứng minh \(\frac{1}{4x\sqrt{yz}}+\frac{1}{4y\sqrt{xz}}+\frac{1}{4z\sqrt{xy}}\le\frac{1}{xyz}\)

Nhân 2 vế với \(xyz\) ta lại được BĐT cần c/m tương đương với:

\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le1\)

Áp dụng BĐT AM-GM lần nữa ta có:

\(\frac{1}{4}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{1}{4}\left(x+y+z\right)=1\) (Đúng)

Vậy BĐT đầu đã được c/m

ngonhuminh
25 tháng 2 2017 lúc 19:32

\(\left|\left\{\right\}\right|\)

Bùi Nhất Duy
26 tháng 2 2017 lúc 13:38

Theo đề ta có : x > 0\(\Rightarrow x^2+4yz>4yz\)

\(\Rightarrow\frac{1}{x^2+4yz}< \frac{1}{4yz}\) (1)

Chứng minh tương tự :\(\frac{1}{y^2+4xz}< \frac{1}{4xz}\) (2)

\(\frac{1}{z^2+4xy}< \frac{1}{4xy}\) (3)

Cộng (1),(2) và (3) vế theo vế ,ta được :

\(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}< \frac{1}{4}\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)=\frac{1}{4}\times\frac{x+y+z}{xyz}=\frac{1}{xyz}\)

Vậy \(\frac{1}{x^2+4yz}+\frac{1}{y^2+4xz}+\frac{1}{z^2+4xy}< \frac{1}{xyz}\)

cc cc
Xem chi tiết
Bưu Ca
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 15:37

Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)

Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))

làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)

vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)

[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)

dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)

Khách vãng lai đã xóa
Hiền Nguyễn Thị
Xem chi tiết
Minh Thư
Xem chi tiết
Kiệt Nguyễn
26 tháng 12 2019 lúc 19:38

Áp dụng BĐT Cô - si cho 3 số không âm:

\(1+x^3+y^3\ge3\sqrt[3]{1.x^3y^3}=3xy\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3}}{\sqrt{zx}}\)

Cộng các vế của các BĐT trên, ta được:

\(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge\)\(\frac{\sqrt{3}}{\sqrt{xy}}\)\(+\frac{\sqrt{3}}{\sqrt{yz}}\)\(+\frac{\sqrt{3}}{\sqrt{zx}}\)

Tiếp tục áp dụng Cô - si:

\(BĐT\ge3\sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}.\frac{\sqrt{3}}{\sqrt{yz}}.\frac{\sqrt{3}}{\sqrt{zx}}}=3\sqrt{3}\)

Vậy \(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
29 tháng 12 2019 lúc 22:50

\(x^3+y^3+1=x^3+y^3+xyz\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

Tương tự:

\(y^3+z^3+1\ge yz\left(x+y+z\right);z^3+x^3+1\ge zx\left(x+y+z\right)\)

\(\Rightarrow VT\ge\frac{\sqrt{xy\left(x+y+z\right)}}{xy}+\frac{\sqrt{yz\left(x+y+z\right)}}{yz}+\frac{\sqrt{zx\left(x+y+z\right)}}{zx}\)

\(=\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)

\(\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\frac{1}{\sqrt{xy}\cdot\sqrt{yz}\cdot\sqrt{zx}}}=3\sqrt{3}\)

Dấu "=" xảy ra tại \(x=y=z=1\)

Khách vãng lai đã xóa