chờ x,y,z là các số thực dương thỏa mãn xyz=1.CMR
\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le1\)
Cho x,y,z là các số thực dương thỏa mã: xyz=1
CMR:
\(\frac{1-x}{x+1}+\frac{1-y}{y+2}+\frac{1-z}{z+2}\le0\)0
Cho x,y,z là các số thực dương thỏa mãn:
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=1\)
CMR \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\)
cho x,y,z là số thực dương thỏa mãn xy+yz+xz=xyz
cmr \(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\frac{xz}{y^3\left(1+x\right)\left(1+z\right)}\ge\frac{1}{16}\)
cho x,y,z là các số thực dương thỏa mãn xy+yz+xz=xyz(x+y+z)
CMR \(\frac{1}{2x+1}+\frac{1}{2y+1}+\frac{1}{2z+1}\ge1\)
Cho x,y,z là số thực dương t/m x+y+z=xyz
CMR \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho x,y,z là các số thực dương thỏa mãn : x+y+z=xyz
Chứng minh rằng : \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
cho x,y,z là các số thực dương thỏa mãn xyz=1 . Tìm max của \(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z=xyz.Chứng minh rằng:
a)\(3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le xyz\)
b)\(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)