Rút gon các phân thức sau
\(\frac{x^3-7x+6}{x^3+5x^2-2x-24}\)
Rút gọn phân thức:
\(\frac{x^3-7x+6}{x^3+5x^2-2x-24}\)
A=\(\frac{x^3-7x+6}{x^3+5x^2-2x-24}\)=\(\frac{x^3-2x^2+2x^2-4x-3x+6}{x^3-2x^2+7x^2-14x+12x-24}\)=\(\frac{x^2\left(x-2\right)+2x\left(x-2\right)-3\left(x-2\right)}{x^2\left(x-2\right)+7x\left(x-2\right)+12\left(x-2\right)}\)=\(\frac{\left(x-2\right)\left(x^2+2x-3\right)}{\left(x-2\right)\left(x^2+7x+12^{^{^{^{^{^{^{^{^{ }}}}}}}}}\right)}\)=\(\frac{\left(x-2\right)\left(x^2-x+3x-3\right)}{\left(x-2\right)\left(x^2+3x+4x+12\right)}\)=\(\frac{\left(x-2\right)\left(x-1\right)\left(x+3\right)}{\left(x-2\right)\left(x+4\right)\left(x+3\right)}\)=\(\frac{x-1}{x+4}\)
a)rút gon các đa thức sau: (x+3)(x – 3) – (x – 3)2
b) phân tích đa thức thành nhân tử: x 2 – y 2 – 5x +5y
\(a,=x^2-9-x^2+6x-9=6x-18\\ b,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x+y-5\right)\left(x-y\right)\)
Bài1: Rút gọn các biểu thức sau
a, 3x^2-2x:(5+1,5x)+10
b, 7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)
Bài2 : tìm x
a, 3(2x-1)-5(x-3) + 6(3x-4) =24
b, 2x^2 + 3(x^2-1) = 5x(x+1)
c,2x(5-3x) +2x(3x+5) - 3(x-7) =3
Rút gọn các phân thức: \(\dfrac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
ĐKXĐ: \(x\ne1;x\ne-\dfrac{3}{2}\)
Ta có: \(\dfrac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}=\dfrac{\left(x-1\right)^2\left(3x-1\right)}{\left(x-1\right)^2\left(2x+3\right)}=\dfrac{3x-1}{2x+3}\)
Rút gon phân thức a)8x^3+y^3/y^3+2xy^2+y^2-4x^2 b)x^2-2x-8/2x^2+9x+10 c)6x-x^2-5/5x^6-x^7. d)x^3+64/2x^3-8x^2+32x. e) x^2+3xy+2y^2/x^3+2x^2y-xy^2-2y^3
Rút gọn đa thức:
a)3x^2-2x(5+1,5x)+10
b)7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)
Tìm x:
a)3(2x-1)-5(x-3)+6(3x-4=24
b)2x^2+3(x^2-1)=5x(x+1)
giúp mình với
rút gọn phân thức \(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
5.phân thức 4x/3 bằng với phân thức nào sau đây? A. -8x/6 b. 8x/6 c. 7x/6 D. 6/8x 6. Tìm điều kiện xác định của các phân thức sau A) x^2-1/x-2 b) 2x^2+3/x+1 7. Rút gọn các phân thức sau: A) 8x^3yz/24xy^2 b) 12x^4y^2z/x+1 8.thực hiện các phép tính sau: A) x^2+4/3x^2-6x + 5x+2/3x -4x/3x^2-6x
Câu 5: B
Câu 6:
a: ĐKXĐ: \(x-2\ne0\)
=>\(x\ne2\)
b: ĐKXĐ: \(x+1\ne0\)
=>\(x\ne-1\)
8:
\(A=\dfrac{x^2+4}{3x^2-6x}+\dfrac{5x+2}{3x}-\dfrac{4x}{3x^2-6x}\)
\(=\dfrac{x^2+4-4x}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)
\(=\dfrac{\left(x-2\right)^2}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)
\(=\dfrac{x-2+5x+2}{3x}=\dfrac{6x}{3x}=2\)
7:
\(\dfrac{8x^3yz}{24xy^2}\)
\(=\dfrac{8xy\cdot x^2z}{8xy\cdot3y}\)
\(=\dfrac{x^2z}{3y}\)
Rút gọn phân thức:
\(\frac{2x^2+2x}{x^2+2x+1}\) \(\frac{x^2+5x+6}{x^2+7x+12}\)
bài này dễ lắm, mk làm 1 câu là bn làm câu sau dc hà
bn thấy tử số có 2x chung, vạy tử là; 2x2 +2x = 2x(x+1)
mẫu số là hằng đẳng thức (x+1)2 = x2 +2x+1
vậy ta có: tử/mẫu = 2x(x+1)/(x+1)2 = 2x/x+1