Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen-Dong Ho
Xem chi tiết
Hòa Huỳnh
Xem chi tiết
Trần Tuấn Hoàng
12 tháng 2 2022 lúc 15:14

-Tham khảo:

https://qanda.ai/vi/solutions/JC8EJxidm3

Hoàng Linh Chi
Xem chi tiết
Nguyễn Tuấn Tú
Xem chi tiết
Hà Thái Vinh
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
ILoveMath
Xem chi tiết
ttanjjiro kamado
10 tháng 1 2022 lúc 22:29

câu 2: 

Với p=2→2p+1=5p=2→2p+1=5 không là lập phương 11 số tự nhiên

→p=2→p=2 loại

→p>2→(p,2)=1→p>2→(p,2)=1

Đặt 2p+1=(2k+1)3,k∈N2p+1=(2k+1)3,k∈N vì 2p+12p+1 lẻ

→2p=(2k+1)3−1→2p=(2k+1)3−1

→2p=(2k+1−1)((2k+1)2+(2k+1)+1)→2p=(2k+1−1)((2k+1)2+(2k+1)+1)

→2p=2k(4k2+6k+3)→2p=2k(4k2+6k+3)

→p=k(4k2+6k+3)→p=k(4k2+6k+3)

Vì pp là số nguyên tố, 4k2+6k+3>k4k2+6k+3>k

→k=1→k=1 và 4k2+6k+34k2+6k+3 là số nguyên tố

→4k2+6k+3=13→4k2+6k+3=13 (Khi k=1k=1) là số nguyên tố

→k=1→k=1 chọn

→2p+1=27→2p+1=27

→p=13

câu 3: p−qp−q chia hết cho 2 suy ra q=k.(2k−1)(2k+1)q=k.(2k−1)(2k+1)
Do vậy qq thành tích 3 số nguyên lớn hơn 1 suy ra vô lý vì nó là nguyên tố.
Suy ra q=3,p=5q=3,p=5 Thỏa mãn
TH2: p−q−1=2tp−q−1=2t nên t=0t=0 vì nếu không thì p−q−1=0↔p−q=1↔p=3,q=2p−q−1=0↔p−q=1↔p=3,q=2 thay vào đề loại.
TH3: q=(2m−1)(2m−2)mq=(2m−1)(2m−2)m
Nếu qq thành tích 3 số nguyên lớn hơn 1 loại
Suy ra p=5,q=3p=5,q=3

tick nha
ttanjjiro kamado
11 tháng 1 2022 lúc 7:07

em hok cop nha

nếu thấy nghi thì tại máy tính của em nó bị lỗi đấy ạ

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2022 lúc 22:29

1.

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

Do vế phải chia hết cho 3  \(\Rightarrow\) vế trái chia hết cho 3

\(\Rightarrow a+b+c⋮3\Rightarrow\left(a+b+c\right)^3⋮27\)

\(a+b+c⋮3\Rightarrow3\left(a+b+c\right)⋮9\)

\(\Rightarrow\left(a+b+c\right)^3-\left(a^3+b^3+c^3\right)-3\left(a+b+c\right)\left(ab+bc+ca\right)⋮9\)

\(\Rightarrow3abc⋮9\Rightarrow abc⋮3\)

2.

Đặt \(2p+1=n^3\Rightarrow2p=n^3-1=\left(n-1\right)\left(n^2+n+1\right)\) (hiển nhiên n>1)

Do \(n^2+n+1=n\left(n+1\right)+1\) luôn lẻ \(\Rightarrow n-1\) chẵn \(\Rightarrow n=2k+1\)

\(\Rightarrow2p=\left(2k+1-1\right)\left(n^2+n+1\right)=2k\left(n^2+n+1\right)\)

\(\Rightarrow p=k\left(n^2+n+1\right)\Rightarrow k=1\Rightarrow n=3\)

\(\Rightarrow p=13\)

Lê Phương Mai
12 tháng 1 2022 lúc 22:32

Tham khảo:

2, Với \(p=2->2p+1=5\) không là lập phương 1 số tự nhiên

\(->p=2\) loại

\(-> p>2->(p,2)=1\)

Đặt \(2p+1=(2k+1)^3, k∈ N,\)vì \(2p+1\) lẻ

\(->2p=(2k+1)^3-1\)

\(-> 2p=(2k+1-1)[(2k+1)^2+(2k+1)+1]\)

\(->2p=2k(4k^2+6k+3)\)

\(->p=k(4k^2+6k+3)\)

Vì \(p\)  là số nguyên tố, \(4k^2+6k+3>k\)

\(->k=1\) và \(4k^2+6k+3\) là số nguyên tố.

\(->4k^2+6k+3=13(\) khi \(k=1)\) là số nguyên tố

\(->k=1\) (chọn)

\(-> 2p+1=27\)

\(->p=13\)

Nguyễn Việt Lâm
12 tháng 1 2022 lúc 22:39

3.

Do \(p+q>0\Rightarrow\left(p-q\right)^3>0\Rightarrow p>q\)

Nếu \(q=2\Rightarrow\left(p-2\right)^3=p+2\Rightarrow p^3-6p^2+11p-10=0\) ko có nghiệm nguyên (loại)

\(\Rightarrow q>2\Rightarrow q\) lẻ \(\Rightarrow p;q\) cùng lẻ \(\Rightarrow p-q\) chẵn

\(\Rightarrow p-q=2k\)

Ta có:

\(\left(p-q\right)^3=p+q\Rightarrow\left(p-q\right)^3-\left(p-q\right)=2q\)

\(\Rightarrow\left(p-q\right)\left[\left(p-q\right)^2-1\right]=2q\)

\(\Rightarrow\left(p-q\right)\left(p-q-1\right)\left(p-q+1\right)=2q\) 

\(\Rightarrow2k\left(p-q-1\right)\left(p-q+1\right)=2q\)

\(\Rightarrow q=k\left(p-q-1\right)\left(p-q+1\right)\)

Do q có 3 ước, mà \(p-q+1>p-q-1\)

\(\Rightarrow q\) là SNT khi \(k=p-q-1=1\)

\(\Rightarrow p-q=2k=2\) (1)

\(\Rightarrow p+q=\left(p-q\right)^3=2^3=8\) (2)

(1);(2) \(\Rightarrow\left(p;q\right)=\left(5;3\right)\)

Kềnh Kiên Kồng
Xem chi tiết
Nguyễn Thế Vượng
Xem chi tiết
Hoàng Thiện Nhân
18 tháng 12 2018 lúc 21:50

lên hỏi cô giáo

Nguyễn Ngọc Ánh
18 tháng 12 2018 lúc 21:53

a=3

b=5

c=7

v
18 tháng 12 2018 lúc 21:53

người ta k bt mới phải lên đây hỏi cô cô lại nói tôi giảng rát họng mà chị/anh không hiểu à đầu người hay đầu đất vậy