câu 2:
Với p=2→2p+1=5p=2→2p+1=5 không là lập phương 11 số tự nhiên
→p=2→p=2 loại
→p>2→(p,2)=1→p>2→(p,2)=1
Đặt 2p+1=(2k+1)3,k∈N2p+1=(2k+1)3,k∈N vì 2p+12p+1 lẻ
→2p=(2k+1)3−1→2p=(2k+1)3−1
→2p=(2k+1−1)((2k+1)2+(2k+1)+1)→2p=(2k+1−1)((2k+1)2+(2k+1)+1)
→2p=2k(4k2+6k+3)→2p=2k(4k2+6k+3)
→p=k(4k2+6k+3)→p=k(4k2+6k+3)
Vì pp là số nguyên tố, 4k2+6k+3>k4k2+6k+3>k
→k=1→k=1 và 4k2+6k+34k2+6k+3 là số nguyên tố
→4k2+6k+3=13→4k2+6k+3=13 (Khi k=1k=1) là số nguyên tố
→k=1→k=1 chọn
→2p+1=27→2p+1=27
→p=13
câu 3: p−qp−q chia hết cho 2 suy ra q=k.(2k−1)(2k+1)q=k.(2k−1)(2k+1)
Do vậy qq thành tích 3 số nguyên lớn hơn 1 suy ra vô lý vì nó là nguyên tố.
Suy ra q=3,p=5q=3,p=5 Thỏa mãn
TH2: p−q−1=2tp−q−1=2t nên t=0t=0 vì nếu không thì p−q−1=0↔p−q=1↔p=3,q=2p−q−1=0↔p−q=1↔p=3,q=2 thay vào đề loại.
TH3: q=(2m−1)(2m−2)mq=(2m−1)(2m−2)m
Nếu qq thành tích 3 số nguyên lớn hơn 1 loại
Suy ra p=5,q=3p=5,q=3
em hok cop nha
nếu thấy nghi thì tại máy tính của em nó bị lỗi đấy ạ