Chứng tỏ rằng số có dạng \(\overline{\text{abba}}\) bao giờ cũng chia hết cho 11.
Chứng tỏ rằng số có dạng \(\overline{abba}\)bao giờ cũng chia hết cho 11.
Ta có \(\overline{abba}=a.1000+b.100+b.10+a\)
\(=\left(a.1000+a\right)+\left(b.100+b.10\right)\)
\(=a.1001+b.110\)
\(=11.\left(a.91+b.10\right)⋮11\)
Vậy....
abba = 1000a+100b+10b+a
=(1000a+a)+(100b+10b)
=1001a+110b
=(91×11)a+(11×10)b
Vi 11chia het cho 11=> (91×11)a chia het cho 11 va (11×10)b chia het cho 11
Vay so co dang abba se chia het cho 11
Chuc ban hoc gioi nhe Hoang Vu .👩
Ta có :abba là bội của 11 => abba chia hết cho 11.
Thật vậy : ( a + b ) - ( b + a ) = ( a + b ) - ( a +b ) = 0
0 chia hết cho 11 nên abba chia hết cho 11.
Vậy....
chứng tỏ rằng số có dạng abba bao giờ cũng chia hết cho 11
abba = 1000 x a +b x 100 + 10 x b + a
abba =1001 x a + 110 x b
abba = a x 91 x 11 + b x 11 x 10
=> abba chia hết cho 11
abba thi chang chia het cho 11 con gi nua
1.Chứng tỏ rằng số có dạng aaa aaa bao giờ cũng chia hết cho 7.
2. Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11
1 chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết chia hết cho 7
2 chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11
1.Ta có :
aaaaaa = a . 111111 = a . 15873 . 7 \(\vdots\) 7
2.Ta có :
abc abc = abc . 1001 = abc . 7 . 11 . 13 \(\vdots\) 11
chứng tỏ rằng số có dạng \(\overline{abba}\) chia hết cho 11
Ta có:
\(\overline{abba}=1001a+110b=11.91a+11.10b=11\left(91a+10b\right)\)
Vì \(11\left(91a+10b\right)\) \(⋮\) 11 nên \(\overline{abba}\) \(⋮\) 11
\(\Rightarrow\) ĐPCM
Ta có:
\(\overline{abba}\) = 1000a + 100b + 10b + a
\(\overline{abba}\) = 1001a + 110b
\(\overline{abba}\) = 11 . (91a + 10b)
Vậy \(\overline{abba}\) \(⋮\) 11.
a) Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7
b) Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11
c)Chứng tỏ rằng lấy một số có hai chữ số, cộng với số gồm 2 chữ số ấy viết theo thứ tuwjnguwowcj lại, ta luôn được một số chia hết cho 11
a) aaaaaa = a . 111111 = a .15873 . 7 = ( a . 15873 ) . 7 chia hết cho 7
Vậy aaaaaa luôc chia hết cho 7
b)abcabc = abc . 1001 = abc . 91.11=( abc . 91 ) . 11 chia hết cho 11
Vậy abcabc bao giờ cũng chia hết cho 11
Chứng tỏ rằng
a/Số có dạng aaa bao giờ cũng chia hết cho 37
b/Số có dạng aaa aaa bao giờ cũng chia hết cho 7
c/Số có dạng abcabc bao giờ cũng chia hết cho 11
a)aaa=a*111 mà 111=3*37 chia hết cho 37
b)aaa aaa=a*111 111 mà 111 111=3*7*11*13*37 chia hết cho 7
c)abc abc=abc*1001 mà 1001=7*11*13 chia hết cho 11.
chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11(chẳng hạn: 328328 chia hết cho 11)
abc abc=abc.1000+abc=abc.(1000+1)
=abc.1001=abc.91.11
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11
vậy số abcabc lúc nào cũng chia hết cho 11
ta co abcabc=1000.abc+abc=abc.1001=91.11.abc
ta co 11 chia hết cho 11 nên abcabc chia hêt cho 11
ta co abcabc = abc . 1001 = 91.11
vì 11 chia hết cho 11 nên abcabc chia hết cho 11
Chứng tỏ rằng số có dạng \(\overline{abcabc}\) bao giờ cũng chia hết cho 11 (chẳng hạn \(328328⋮11\)) ?
Ta có : \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.11.91⋮11\)
\(\Rightarrow\overline{abcabc}⋮11\)
Ta có \(\overline{abcabc}=\overline{abc}.1001\)
\(=\overline{abc}.11.91⋮11\)
\(=>\overline{abcabc}⋮11\left(dpcm\right)\)