Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 20:50

a: \(\left\{{}\begin{matrix}x+4y=-11\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=-10\\x+4y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\y=\dfrac{-11-x}{4}=\dfrac{-11+\dfrac{5}{3}}{4}=-\dfrac{7}{3}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}2x-y=7\\3x+5y=-22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-3y=21\\6x+15y=-66\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-18y=78\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-13}{3}\\x=\dfrac{y+7}{2}=\dfrac{4}{3}\end{matrix}\right.\)

Lalisa Manobal
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2021 lúc 18:42

ĐKXĐ: ...

\(y\left(y^2-5y+4\right)+y^2=\left(y^2-5y+4\right)\sqrt{x+1}+x+1\)

\(\Leftrightarrow\left(y^2-5y+4\right)\left(y-\sqrt{x+1}\right)+\left(y+\sqrt{x+1}\right)\left(y-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left(y-\sqrt{x+1}\right)\left[\left(y-2\right)^2+\sqrt{x+1}\right]=0\)

\(\Leftrightarrow y=\sqrt{x+1}\Rightarrow y^2=x+1\)

Thế xuống pt dưới:

\(2\sqrt{x^2-3x+3}+6x-7=\left(x+1\right)\left(x-1\right)^2+x\sqrt{3x-2}\)

\(\Leftrightarrow2\left(\sqrt{x^2-3x+3}-1\right)+x\left(x-\sqrt{3x-2}\right)=x^3-7x+6\)

\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{\sqrt{x^2-3x+3}+1}+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=\left(x+3\right)\left(x^2-3x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}=x+3\left(1\right)\end{matrix}\right.\)

Xét (1) với \(x\ge\dfrac{3}{2}\):

\(\dfrac{2}{\sqrt{x^2-3x+3}+1}\le8-4\sqrt{3}< 1\)

\(\sqrt{3x-2}\ge0\Rightarrow\dfrac{x}{x+\sqrt{3x-2}}\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}< 2\\x+3>2\end{matrix}\right.\) 

\(\Rightarrow\left(1\right)\) vô nghiệm

Pham Tien Dat
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2021 lúc 23:45

ĐKXĐ: ...

Phương trình đầu tương đương:

\(2y^3+y=2\sqrt{1-x}-2x+\sqrt{1-x}\)

\(\Leftrightarrow2y^3+y=2\left(1-x\right)\sqrt{1-x}+\sqrt{1-x}\)

Đặt \(\sqrt{1-x}=a\ge0\)

\(\Rightarrow2y^3+y=2a^3+a\)

Hàm \(f\left(t\right)=2t^3+t\) có \(f'\left(t\right)=6t^2+1>0\) ;\(\forall t\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow y=a\Leftrightarrow y=\sqrt{1-x}\Rightarrow y^2=1-x\) (với \(y\ge0\))

Thế xuống pt dưới:

\(\sqrt{4x+5}=2x^2-6x-1\)

Đặt \(\sqrt{4x+5}=2t-3\Rightarrow\left\{{}\begin{matrix}2t-3=2x^2-6x-1\\4x+5=4t^2-12t+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t=x^2-3x+1\\x=t^2-3t+1\end{matrix}\right.\)

Hệ đối xứng, chắc tới đây bạn giải quyết được phần còn lại

Nguyễn Thị Huệ
Xem chi tiết
Lý Quốc Bảo
19 tháng 1 2016 lúc 19:17

1/ khi m=3 ta có

x+3y=3

3x+4y=7

<=>x=3-3y

      3(3-3y)+4y=7

<=>x=3-3y

      3y+4y=7

<=>x=3-3y

      7y=7

==>y=1

<=>x=3-3y

=>x=3-3.1

=>x=3-3

==>x=0

vây x=0     ; y=1

Songoku
Xem chi tiết
Annie Scarlet
Xem chi tiết
Nguyễn Hương Ly
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 12 2020 lúc 17:54

ĐKXĐ: ...

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x+y}+6x-3y=6\\\dfrac{3}{x+y}+2x-4y=1\end{matrix}\right.\)

\(\Rightarrow4x+y=5\Rightarrow y=5-4x\)

Thế vào phương trình đầu:

\(\dfrac{1}{x+5-4x}+2x-\left(5-4x\right)=2\)

\(\Leftrightarrow\dfrac{1}{5-3x}+6x-7=0\)

\(\Leftrightarrow\left(6x-7\right)\left(5-3x\right)+1=0\)

\(\Leftrightarrow...\)

Anh Quynh
Xem chi tiết
Lấp La Lấp Lánh
28 tháng 9 2021 lúc 13:03

h) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{3}{x}-\dfrac{4}{y}=-1\end{matrix}\right.\)\(\left(1\right)\)\(\left(đk:x,y\ne0\right)\)

Đặt \(a=\dfrac{1}{x},b=\dfrac{1}{y}\)

\(\left(1\right)\Leftrightarrow\) \(\left\{{}\begin{matrix}a+b=2\\3a-4b=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3a+3b=6\\3a-4b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\7b=7\end{matrix}\right.\)\(\Leftrightarrow a=b=1\)

Thay a,b:

\(\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{y}=1\Leftrightarrow x=y=1\left(tm\right)\)

Đặng Anh Thư
Xem chi tiết
Xyz OLM
26 tháng 1 2023 lúc 8:34

ĐKXĐ : \(\left\{{}\begin{matrix}x>-2\\y>-2\end{matrix}\right.\)

Có : x3 + x + 2 = y3 - 3y2 + 4y

<=> x3 + x + 2 = (y3 - 3y2 + 3y - 1) + y + 1

<=> x3 + x + 2 = (y - 1)3 + y + 1 

<=> x3 - (y - 1)3 + x - y + 1 = 0 

<=> (x - y + 1)[x2 + x(y - 1) + (y - 1)2]  + (x - y + 1)  = 0

<=>  (x - y + 1)[x2 + x(y - 1) + (y - 1)2 + 1] = 0

<=> x - y + 1 = 0 (Vì  x2 + x(y - 1) + (y - 1)2 + 1 > 0 \(\forall x;y\)  )

<=> y = x + 1

Thay y = x + 1 

\(2\sqrt{x+2}=y+2\)

\(\Leftrightarrow2\sqrt{x+2}=x+3\)

\(\Leftrightarrow x-2\sqrt{x+2}+3=0\)

\(\Leftrightarrow(\sqrt{x+2}-1)^2=0\)

\(\Leftrightarrow\sqrt{x+2}=1\)

\(\Leftrightarrow x=-1\) (tm)

Khi đó y = 0

Vậy (x;y) = (-1;0)