Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất:
a) B=27−2x/12−x
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất
a. A=1/7-x b.B=27-2x/12-X
2.Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất
a. A=1/x-3 b. B= 7-x/x-5 c. C= 5x-19/x-4
3.Tìm giá trị nhỏ nhất của các biếu thức sau
a. A=x^4+3x^2 +2 b. B=(x^4+5)^2 c. C=(x-1)^2+(y+2)^2
4.Tìm giá trị lớn nhất của các biểu thức sau
a. A=5-3(2x-1)^2 b.B=1/2(x-1)^2+3 c. C=x^2+8/x^2+2
A)Tìm các giá trị nguyên của x để các biểu thức sau co giá trị lớn nhất:
1) A=14-x/4-x
2) B=1/7-x
3) C=27-2x/12-x
B) Tìm các giá trị nguyên của x để cac biểu thức sau có giá trị nhỏ nhất:
1) A=1/x-3
2) B=7-x/x-5
3) C=5x-19/x-4
Tìm các giá trị nguyên của x để biểu thức sau có giá trị lớn nhất:
B = \(\frac{27-2x}{12-x}\)
Ta có : \(B=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Xét \(x>12\)thì B < 0 (1)
Xét x < 12 thì mẫu 12 - x là số nguyên dương . Phân số B có tử và mẫu đều dương,tử không đổi nên
B lớn nhất \(\Leftrightarrow\)mẫu 12 - x nhỏ nhất \(\Leftrightarrow\)12 - x = 1 \(\Leftrightarrow\)x = 11
Thay x = 11 ta có : \(2+\frac{3}{12-11}=2+\frac{3}{1}=5\)
Khi đó B = 5 (2)
So sánh 1 và 2 , ta thấy GTLN của B bằng 5 khi và chỉ khi x = 11
tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất:
a) \(A = {1 \over 7-x}\) b) \(B = {27-2x \over 12-x}\)
\(A=\frac{1}{7-x}\)
A lớn nhất khi 7-x nhỏ nhất và 7-x >0
vậy 7-x = 1 <=> x = 6
\(B=\frac{27-2x}{12-x}=\frac{24-2x}{12-x}+\frac{3}{12-x}=2+\frac{3}{12-x}\)
B lớn nhất khi 3/ (12-x) lớn nhất => 12-x phải là số nguyên( để x nguyên) VÀ nhỏ nhất với giá trị dương.
Giá trị dương nhỏ nhất là 1 => 12 -x = 1 => x = 11
vậy x = 11 thì B lớn nhất
tìm \(x\in Z\) để các biểu thức sau có giá trị lớn nhất và có giá trị nhỏ nhất :
1)A = \(\dfrac{1}{7-x}\) 2) B = \(\dfrac{8-x}{x-3}\)
3) C = \(\dfrac{27-2x}{12-x}\)
1) Xét rằng x > 7 <=> A < 0
Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến
A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1
Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6
Tìm giá trị lớn nhất của biểu thức :
A = \(\frac{1}{2\left(x-1\right)^2+3}\)
Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất :
A = \(\frac{1}{7-x}\)
B = \(\frac{27-2x}{12-x}\)
Tìm giá trị nhỏ nhất :
B = \(\left(x^4+5\right)^2\)
A lớn nhất khi 2(x-1)^2 + 3 nhỏ nhất Vậy A lớn nhất là 1/3 khi x = 1
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Cho biểu thức
M=căn x +1/2
A)Tìm các giá trị nguyên của x để M nhận giá trị nguyên
B)Tìm giá trị lớn nhất của biểu thức M
c)Tìm các giá trị nguyên của x để A nhận giá trị nguyên
Bài 1. Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất
a. A = (x – 1)² + 12
b. B = |x + 3| + 2020
Bài 2. Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất
Q = 20 – |3 – x|
Bài 1.
a.Ta có: (x - 1)2 ≥ 0 với mọi x ∈ Z
=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z
Dấu "=" xảy ra khi (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
Vậy GTNN của A là 12 tại x = 1.
b. Có: |x + 3| ≥ 0 với mọi x ∈ Z
=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z
Dấu "=" xảy ra khi |x + 3| = 0
=> x + 3 = 0
=> x = -3
Vậy GTNN của B là 2020 tại x = -3.
Bài 2.
Có: |3 - x| ≥ 0 với mọi x ∈ Z
=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z
Dấu "=" xảy ra khi |3 - x| = 0
=> 3 - x = 0
=> x = 3
Vậy GTLN của Q là 20 tại x = 3.
1. A = ( x - 1 )2 + 12
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)
Dấu = xảy ra <=> x - 1 = 0 => x = 1
Vậy AMin = 12 khi x = 1
B = | x + 3 | + 2020
\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)
Dấu = xảy ra <=> x + 3 = 0 => x = -3
Vậy BMin = 2020 khi x = -3
2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )
Q = 20 - | 3 - x |
\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)
=> \(20-\left|3-x\right|\le20\forall x\)
Dấu = xảy ra <=> 3 - x = 0 => x = 3
Vậy QMax = 20 khi x = 3
a, \(A=\left(x-1\right)^2+12\)
Ta có : \(\left(x-1\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-1\right)^2+12\ge12\)
Dấu ''='' xảy ra <=> x - 1 = 0 <=> x = 1
Vậy GTNN của A là 12 tại x = 1
b, \(B=\left|x+3\right|+2020\)
Ta có \(\left|x+3\right|\ge0\forall x\in Z\)
\(\Rightarrow\left|x+3\right|+2020\ge2020\)
Dấu ''='' xảy ra <=> x + 3 = 0 <=> x = -3
Vậy GTNN của B là 2020 tại x = -3
Bài 2 tương tự
A( Tìm giá trị nhỏ nhất của các biểu thức sau : A=x^2 - 2x + 19.B) Tìm giá trị lớn nhất của các biểu thức sau : B= -x^2 - 5x + 20