Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhóc Cô Đơn
Xem chi tiết
Nguyễn Ngọc Thanh Tâm
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
3 tháng 4 2020 lúc 15:57

\(ĐKXĐ:0\le x\le1\)

Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{1-x}=b\\\sqrt[4]{\frac{1}{2}}=c\end{cases}}\left(a,b,c\ge0\right)\)

Ta có hpt : 

\(\hept{\begin{cases}a+a^2+b+b^2=2c+2c^2\\a^4+b^4=2=2c^4\end{cases}\left(^∗\right)}\)

Áp dụng BĐT : 

\(a^2+b^2\le\sqrt{2\left(a^4+b^4\right)}=\sqrt{2.2c^4}=2c^2\left(c>0\right)\left(1\right)\)

\(a+b\le\sqrt{2\left(a^2+b^2\right)}\le\sqrt{2.2c^2}=2c\left(2\right)\)

\(\left(1\right)+\left(2\right)\) vế theo vế \(\Rightarrow a^2+b^2+a+b\le2c^2+2c\)

Để dấu " = " ở (* ) xảy ra 

\(\Rightarrow a=b\Rightarrow a^4=b^4\Rightarrow x=1-x\Rightarrow x=\frac{1}{2}\left(TMĐKXĐ\right)\)

Khách vãng lai đã xóa
Trần Chí Bảo
Xem chi tiết
IS
5 tháng 4 2020 lúc 18:53

https://www.facebook.com/khoi.nguyenduykhoi.399 ( face book mình ) kết bạn nhá r mình gửi bài làm cho 

ko chụp ảnh gửi trên OLM đc mà bài  này mình bày những chô trên OLm ko ghi đc 

Nên kết bạn . mình gửi ảnh cho

Khách vãng lai đã xóa
Nguyễn Hoàng Bảo Nhi
5 tháng 4 2020 lúc 21:35

ĐKXĐ : \(0\le x\le1\)

Đặt : \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{1-x}=b\\\sqrt[4]{\frac{1}{2}}=c\end{cases}}\left(a,b,c\ge0\right)\)

Ta có HPT 

\(\hept{\begin{cases}a+a^2+b+b^2=2c+2c^2\\a^4+b^4=2=2c^4\end{cases}\left(^∗\right)}\)

Áp dụng BĐT : 

\(a^2+b^2\le\sqrt{2\left(a^4+b^4\right)}=\sqrt{2.2c^4}=2c^2\left(c>0\right)\left(1\right)\)

\(a+b\le\sqrt{2\left(a^2+b^2\right)}\le\sqrt{2.2c^2}=2c\left(2\right)\)

(1) + (2) vế theo vế \(\Rightarrow a^2+b^2+a+b\le2c^2+2c\)

Để dấu " = " ở (*) xảy ra 

\(\Rightarrow a=b\Rightarrow a^4=b^4\Rightarrow x=1-x\Rightarrow x=\frac{1}{2}\left(TMĐKXĐ\right)\)

Khách vãng lai đã xóa
Tam Cao Duc
Xem chi tiết
Hoàng Tử Hà
23 tháng 9 2019 lúc 23:36

1/ ĐKXĐ:...

\(\Leftrightarrow\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}=\frac{x+5}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(1-\sqrt{x+1}\right)^2}=\frac{x+5}{2}\)

\(\Leftrightarrow\sqrt{x+1}+1+\left|1-\sqrt{x+1}\right|=\frac{x+5}{2}\)

Nếu \(0\ge x\ge-1\Rightarrow\left|1-\sqrt{x+1}\right|=1-\sqrt{x+1}\)

\(\Rightarrow2=\frac{x+5}{2}\Leftrightarrow x=-1\left(tm\right)\)

Nếu \(x>0\Rightarrow\left|1-\sqrt{x+1}\right|=\sqrt{x+1}-1\)

\(\Rightarrow2\sqrt{x+1}=\frac{x+5}{2}\Leftrightarrow16x+16=x^2+10x+25\)

\(\Leftrightarrow x^2-6x+9=0\Leftrightarrow x=3\left(tm\right)\)

Vậy...

Câu dưới tương tự

Ngu Người
Xem chi tiết
Thầy Giáo Toán
4 tháng 9 2015 lúc 22:30

Điều kiện xác định \(0\le x\le1.\)

Đặt \(t=\sqrt{x}+\sqrt{1-x},s=\sqrt[4]{x}+\sqrt[4]{1-x}\) , theo bất đẳng thức Cô-Si (hoặc dùng luôn Bunhia)

\(t^2=\left(\sqrt{x}+\sqrt{1-x}\right)^2=1+2\sqrt{x\left(1-x\right)}\le1+x+1-x=2\to t\le\sqrt{2}=\frac{2}{\sqrt{2}}\).

\(s^2=t+2\sqrt[4]{x\left(1-x\right)}\le t+\sqrt[]{x}+\sqrt{1-x}=2t\le2\sqrt{2}\to s\le\frac{2}{\sqrt[4]{2}}\)

Vậy vế trái của phương trình bằng \(VT=s+t\le\frac{2}{\sqrt{2}}+\frac{2}{\sqrt[4]{2}}=2\left(\sqrt{\frac{1}{2}}+\sqrt[4]{\frac{1}{2}}\right)=VP\), nên các dấu bằng phải xảy ra. Vậy các dấu bằng phải xảy ra nên \(\sqrt{x}=\sqrt{1-x}\leftrightarrow x=\frac{1}{2}.\)
 

lê duy mạnh
Xem chi tiết
lê duy mạnh
18 tháng 7 2019 lúc 15:43

MN ƠI GIÚP MK NHA

Kem Su
Xem chi tiết
Hoàng Nguyễn Văn
18 tháng 2 2020 lúc 9:33

ĐKXĐ:\(x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt[4]{x}-1\right)^2}+\sqrt{\left(\sqrt[4]{x}-3\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt[4]{x}-1\right|+\left|\sqrt[4]{x}-3\right|=2\)

Ta có: \(\left|\sqrt[4]{x}-1\right|\ge\sqrt[4]{x}-1;\left|\sqrt[4]{x}-3\right|\ge3-\sqrt[4]{x}\)

\(\Rightarrow\left|\sqrt[4]{x}-1\right|+\left|\sqrt[4]{x}-3\right|\ge\sqrt[4]{x}-1+3-\sqrt[4]{x}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|\sqrt[4]{x}-1\right|=\sqrt[4]{x}-1\\\left|\sqrt[4]{x}-3\right|=3-\sqrt[4]{x}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[4]{x}-1\ge0\\\sqrt[4]{x}-3\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt[4]{x}\ge1\\\sqrt[4]{x}\le3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le81\end{cases}\left(TMĐKXĐ\right)}}\)

Khách vãng lai đã xóa
Trang-g Seola-a
Xem chi tiết
bach nhac lam
Xem chi tiết
Vũ Huy Hoàng
1 tháng 7 2019 lúc 16:34

b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:

* Với \(x>-2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)

* Với \(x< -2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)

Do đó pt có nghiệm duy nhất \(x=-2\)

tthnew
1 tháng 7 2019 lúc 17:02

c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)

\(\Rightarrow a^4+b^4=2\)

Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)

Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

bach nhac lam
1 tháng 7 2019 lúc 16:10