Cho a1+a2+a3+....+a2017=20192018
Chứng minh rằng: a13+a23+....+a20173 \(⋮\) 3
cho 2017 số nguyên dương a1,a2,a3,a4,...,a2017 thõa mãn 1/a1+1/a2+1/a3+....+1/a2017=1009. chứng minh rằng có ít nhất hai trong 2017 số tự nhiên trên bằng nhau
cho các số a1+a2=a2+a3=a3+a4=a4+a5=a5+a6=a6+a7=..=a2016+a2017
mà a1+a2+a3+a4+a5+a6+a7+a8+...+a2016+a2017=4032 tìm các số a1,a2,a3,a4,a5,...,a2016,a2017
toi khong biet toi dang nho cac ban giai do ma
a1+a2+...+a2017 thoa man a1+a2+...+a2017=0 va a1+a2=a3+a4=...=a2017+a1=1.tinh a1 ,a2,a2017
cho dãy tỉ số bằng nhau a1/a2=a2/a3=a3/a4=.....a2017/a2018 và a1/a2018=-5^1007. Biết a1+a2+a3+a4+...+a2018 khác 0. Tính a1+a2+a3+.....+a2017/a2+a3+a4+....a2018
cho 2017 số nguyên a a1,a2,a3,..,a2017 có tổng bằng 0 và thỏa mãn a1+a2=a3+a4=a4+a5=..=a2015+a2016=a2017+a1=1 .tìm a1,a2,a2017
TK MÌNH ĐI MỌI NGƯỜI MÌNH BỊ ÂM NÈ!
AI TK MÌNH MÌNH TK LẠI CHO!
a1,a2,a3,......,a2017 là các số nguyên.b1,b2,b3,.....,b2017 là 1 hoán vị (hoán vị là 1 cách sắp xếp theo 1 thứ tự khác nhé) của các số a1,a2,a3,....a2017.Chứng tỏ rằng (a1-b1).(a2-b2). ........ .(a2017-b2017) là 1 số chẵn.
Giả sử 2017 số a1 - b1, a2 - b2,..., a2017 - b2017 là các số lẻ.
Khi đó (a1 - b1) + (a2 - b2) + ... + (a2017 - b2017) = (a1 + a2 + ... + a2017) - (b1 + b2 + ... + b2017) là số lẻ. (1)
Lại có theo đề bài b1, b2,..., b2017 là 1 hoán vị của các số a1, a2,..., a2017 nên (a1 + a2 + ... + a2017) - (b1 + b2 + ... + b2017) = 0. (2)
Ta thấy (1) trái với (2). Do đó giả sử sai.
Suy ra trong 2017 số a1 - b1, a2 - b2,..., a2017 - b2017 có một số chẵn, do đó tích chúng là số chẵn.
Vậy ta có đpcm
giả sử a1,a2,...,a2017 là một hoán vị của 1,1,...,2017 thỏa mãn |a1 - 1| = |a2 - 2| = ... =|a2017 - 2017|. chứng minh rằng a1 = 1; a2 = 2; ... a2017 = 2017
cho dãy tỉ số bằng nhau: a1/a2=a2/a3=a3/a4=.....=a2017/a2018 và a1/a2018= -5^2017. biết a2+a3+a4+....+a2018 khác 0. khi đó giá trị của biểu thức:
S= a1+a2+a3+...+a2017/a2+a3+a4+...+a2018
ĐÂY :
Ta có:a1/a2=a2/a3=....=a2017/a2018
suy ra a1/a2xa2/a3x...xa2017/a2018=(a1/a2)^2017(2017 số bằng nhau nhân với nhau) (1)
mặt khác a1/a2xa2/a3x.....xa2017/a2018==(a1xa2x...a2017)/(a2xa3x...xa2018)=a1/a2018(giản ước)=-5^2017 (2)
Từ(1)và(2) suy ra (a1/a2)^2017=-5^2017 suy ra a1/a2=-5
Theo tính chất dãy tỉ số bằng nhau:
-5=a1/a2=a2/a3=...=a2017/a2018=a1+a2+a3+...+a2017/a2+a3+a4+..+a2018
suy ra a1+a2+a3+...+a2017/a2+a3+a4+..+a2018=-5
Vậy :a1+a2+a3+...+a2017/a2+a3+a4+..+a2018=-5
Hôm nào có bài nào khó thì gửi mình giải cho
-5 nha bn trong violympic vòng 12 lớp 7 phải ko chắc chắn đúng lun 100000000000000000000000000000000000000000000000000% vì bài này mik làm rùi.
cho mik nha
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Cho 23 số nguyên khác 0: a1;a2;a3;.....;a23 có tính chất:
+ a1 dương
+Tổng 3 số liên tiếp bất kì dương
+Tổng cả 23 số là âm
Chứng minh: a2 âm và a3 dương.