Tìm số tự nhiên n để A chia hết cho B:
A = 16xn-2y6 - 38xn-3y5 và B = 4x4yn-1
bài:
a) tìm các số tự nhiên x,y sao cho (2*x+1)*(y-5)=12
b) tìm số tự nhiên n sao cho 4*n-5 chia hết 2n-1
c) tìm số tự nhiên x sao cho x+3 chia hết x mũ 2 +1
d) tìm tất cả các số B=62xy427(có gạch trên đầu),biết rằng số B chia hết cho 99
e) tìm các số tự nhiên a và b để A= 25a2b(có gạch trên đầu) chia hết cho 36 và số B=a378b(có gạch trên đầu)chia hết cho 72
g) tìm số tự nhiên a,b để A=4a1b(có gạch trên đầu) chia hết cho 12
làm xong vui lòng các bạn chụp ảnh lên ( bài lầm đầy đủ ko tẩy xóa)
cho số tự nhiên n = 5a+ 4b (a, b ∈ N) . Tìm các số a và b để :
a) A chia hết cho 4
b) A chia hết cho 13
a: A chia hết cho 4
=>5a+4b chia hết cho 4
=>5a chia hết cho 4
=>a chia hết cho 4
=>\(\left\{{}\begin{matrix}a\in B\left(4\right)\\b\in N\end{matrix}\right.\)
b: A chia hết cho 13
=>(a,b) thuộc {(4;8); (1;2); (3;6)}
=>(a,b) thuộc {(13k;13h(h,k\(\in N\))); (k;2k(k\(\in N\)))}
a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không?
b) Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không?
16. Tìm tất cả các số tự nhiên n để:
a) (15 + 7n) chia hết cho n
b) (n + 28) chia hết cho (n + 4)
17. Có thể tìm được hai số tự nhiên a và b để:
66a + 55b = 111 011?
a) Tổng ba số tự nhiên liên tiếp có dạng như sau:
(1k+1 )+ (1k+ 2) + (1k + 3) = 1k6
Mà 1k6 chia hết cho 3 (6 chia hết cho 3)
Nên tổng ba số tự nhiên liên tiếp chia hết cho 3
b) Tổng bốn số tự nhiên liên tiếp có dạng:
(1k + 1 ) + (1k + 2) + (1k + 3) + (1k + 4) = 1k10
1k10 không chia hết cho 4 nên tổng bốn số tự nhiên liên tiếp ko chia hết cho 4
16)
a) (15 + 7n) chia hết cho n
Theo quy tắc thì nếu (a + b) chia hết cho k thì a và b đều chia hết cho k
Vậy 15 chia hết cho 5 (bỏ đi 7n vì ở đây vẫn là n ẩn 0
Suy ra n thuộc U(15)
Ư(15) = { 1 ; 3 ; 5 ; 15 }
Thử lần lượt các số trên với 7n: bằng cách đem: 7n chia n
Ta có: 71 chia hết cho 1 ( 1 là n) => Chọn
73 không chia hết cho 3 (3 là n) => Bỏ chọn
75 chia hết cho 5 ..tương tự như trên.. => Chọn
7(15) vượt quá số có 2 chữ số => Bỏ chọn
Vậy n được là: 1 và 5
b) Tương tự như trên
17) 66a + 55b = 111 011?
Nhận xét: 111 011? là số có 7 chữ số
Mà trong khi 66a + 55b đều là số có 2 chữ số => Tổng trên tối đa là 4 chữ số.
4 < 7 => Không thể tìm được số tự nhiên a và b để thỏa mãn yêu cầu trên
17
Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b
1,Tìm tất cả các số tự nhiên n để:
a) (15 + 7n) chia hết cho n
b) (n + 28) chia hết cho (n + 4)
2, Có thể tìm được hai số tự nhiên a và b để:
66a + 55b = 111 011?
3, Có số tự nhiên nào mà chia cho 18 dư 12, còn chia cho 6 thì dư 2 không?
1) a) Ta có :
15 + 7n chia hết cho n
mà n chia hết cho n
nên 7n chia hết cho n
=> (15 + 7n ) - 7n chia hết cho n
=> 15 chia hết cho n
=> n thuộc Ư(15) nên n = 1 ; -1 ; 3 ; -3 ; 5 ; -5 ;15 ; -15
b) Ta có :
n + 28 chia hết cho n +4
mà n+4 chia hết cho n+4
nên n+28 - (n+4) chia hết cho n+4
=> 32 chia hết cho n+4
=>n+4 thuộc Ư(32) nên n+4=-1;1;-2;2;-4;4;8;-8;16;-16;32;-32
=> n lần lượt = -5;-3;-6;-2;-8;0;4;-12;12;-20;28;-36
phần 2 dài quá vs m cx không chắc đúng nên làm phần 3 luôn
3) vì số tự nhiên chia cho 18 dư 12 có dạng là : 18k + 12
mà 18 chia hết cho 6
và 12 chia hết cho 6
nên 18k + 12 chia hết cho 6
Vậy không tồn tại số tự nhiên chia cho 18 dư 12 , còn chia 6 dư 2
2. Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b
tìm nEN để
a) 15 chia hết cho n - 15
b) n + 13 chia hết cho n + 5
c) 4n + 17 chia hết cho n + 3
d) 2n + 9 chia hết cho n - 1
A) Tìm các chữ số a,b để số 2a3b chia hết cho cả 2 ; 5 và 9
B) Tìm ước chung của các số 42 ; 54
C) Tìm các số tự nhiên N để N + 4 chia hết cho N + 1
a: Đặt \(A=\overline{2a3b}\)
A chia hết cho2 và 5 khi A chia hết cho 10
=>b=0
=>\(A=\overline{2a30}\)
A chia hết cho 9
=>2+a+3+0 chia hết cho 9
=>a+5 chia hết cho 9
=>a=4
Vậy: \(A=2430\)
b: \(42=2\cdot3\cdot7;54=3^3\cdot2\)
=>\(ƯCLN\left(42;54\right)=2\cdot3=6\)
=>\(ƯC\left(42;54\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
c: \(n+4⋮n+1\)
=>\(n+1+3⋮n+1\)
=>\(3⋮n+1\)
=>\(n+1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{0;-2;2;-4\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;2\right\}\)
chứng minh rằng nếu a và b là các số tự nhiên thỏa mãn 5a+3b và 13a+8b cũng chia hết cho 2015 thì a chia hết cho 2015 và b cũng chia hết chia hết cho 2015
2)tìm số tự nhiên n để
(15-2n) chia hết cho (n+1) với n nhỏ hơn hoặc bằng 7
Bài 1: Cho M = 48+20+a với a là số tự nhiên
Tìm a để M chia hết cho 4, không chia hết cho 4
Bài 2: Tích A =1.2.3.4.5....20 có chia hết cho 400 không
Bài 3:
a, Tìm số tự nhiên n để n+10 chia hết cho n+1
b, Tìm số tự nhiên n để3n +40 chia hết cho n+2
Hông biết kho và nhiều thế
\(B1:\)-Ta xát tổng của M
48 chia hết cho 4
20 chia hết cho 4
Ta áp dụng công thức a chia hết cho d;b chia hết cho d;c chia hết cho d
=>a+b+c chia hết cho d
=>Để m chia hết cho 4 thì a cũng phải chia hết cho 4
Để M không chia hết cho 4 thì a phải không chia hết cho 4
\(B2:\)1x2x3x4x5x...x20
=(5x20x4)x1x2x3x...
=400x1x2x3x...
Ta có 400 chia hết cho 400
Ta áp dụng công thức
a chia hết cho b thì a nhân với bất kì số nào cũng chia hết cho b
=>A chia hết cho 400
\(B3:\)Ta có n+10 chia hết cho n+1;n+1 chia hết cho n+1
=>(n+10)-(n+1) chia hết cho n+1
a,(n+10)-(n+1)=9
=>9 là bội của n+1
Ư(9)=(1;-1;3;-3;9;-9)
n+1 | 1 | -1 | -3 | 3 | 9 | -9 | |
n | 0 | -2 | -4 | 2 | 8 | -10 |
=.n=(0;-2;-4;2;8;-10
Bài 5. Một số bài tập khác 1. Cho A=4+4^2+4^3+...+4^23+4^24 . Chứng minh: A chia hết 20; A chia hết 21; A chia hết 420 . 2. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau: a) n + 2 và n + 3 b) 2n + 1 và 9n + 4. 3. Tìm các số tự nhiên a, b biết: a) a + b = 192 và ƯCLN(a, b) = 24. b) 0 < a < b, a + b = 42 và BCNN(a, b) = 72. 4. Tìm số tự nhiên nhỏ nhất sao cho số đó chia 3 dư 2, chia cho 5 dư 3, chia cho 7 dư 4. 5. 5.1. Tìm số nguyên x, biết: a) 2x – 1 là bội của x – 3; b) 2x + 1 là ước của 3x + 2. 5.2. Tìm số nguyên x, y sao cho: a) (2x – 1)(y 2 + 1) = -17; b) (3 – x)(5 - y) = 2; c) x.y = 18; x + y = 11.
Giúp e vs ak, e đang cần gấp. PLS!
Bài 1: Tìm số tự nhiên n để:
a) (3n + 1) ⋮ (n - 1) b) (n - 3) ⋮ (2n - 1)
Bài 2:
a) Tìm số tự nhiên có hai chữ số giống nhau, biết rằng số đó chia hết cho 2 và còn chia cho 5 thì dư 2.
b) Tìm số có ba chữ số giống nhau, biết rằng số đó chia hết cho 5, còn chia 2 thì dư 1.
c) Tìm số có hai chữ số giống nhau, biết rằng số đó chia hết cho 3 và chia cho 5 thì dư 1.
d) Tìm tập hợp các số tự nhiên vừ chia hết cho 2, vừa chia hết cho 5 và 132 < x < 178.
Bài 3: Tìm các số tự nhiên x,y biết:
a) \(\overline{23x5y}\) chia hết cho 2, 5 và 9
b)\(\overline{2x3y}\) chia hết cho 2, 5 và chia cho 9 dư 1
c) \(\overline{2x3}\) + \(\overline{3y5}\) chia hết cho 9 và x - y = 3
d) \(\overline{x378y}\) chia hết cho 72
Bài 4: Tìm tất cả các số tự nhiên n sao cho:
a) (n + 7) ⋮ (n + 1) b) (3n + 19) ⋮ (3n - 2) c) (4n +29) ⋮ (2n + 1)
2/
a/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}⋮2\) => b chẵn
\(\overline{bb}:5\) dư 2 => b={2;7}
Do b chẵn => b=2
Số cần tìm \(\overline{bb}=22\)
b/
Gọi số cần tìm là \(\overline{bbb}\)
Theo đề bài \(\overline{bb}:2\) dư 1 => b lẻ
\(\overline{bbb}⋮5\) => b={0;5}
Do b lẻ => b=5
Số cần tìm \(\overline{bbb}=555\)
c/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}:5\) dư 1 => b={1;6}
\(\overline{bb}⋮3\Rightarrow b+b=2b⋮3\Rightarrow b⋮3\)
=> b=6
Số cần tìm là \(\overline{bb}=66\)
1/
a/
\(\dfrac{3n+1}{n-1}=\dfrac{3\left(n-1\right)+4}{n-1}=3+\dfrac{4}{n-1}\)
\(\left(3n+1\right)⋮\left(n-1\right)\) khi \(4⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)=\left\{-4;-2;-1;1;2;4\right\}\Rightarrow n=\left\{-3;-1;0;2;3;5\right\}\)
b/
\(\left(n-3\right)⋮\left(2n-1\right)\Rightarrow2\left(n-3\right)⋮\left(2n-1\right)\)
\(\dfrac{2\left(n-3\right)}{2n-1}=\dfrac{2n-6}{2n-1}=\dfrac{\left(2n-1\right)-5}{2n-1}=1-\dfrac{5}{2n-1}\)
\(2\left(n-3\right)⋮\left(2n-1\right)\) khi \(5⋮\left(2n-1\right)\Rightarrow\left(2n-1\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n=\left\{-2;0;1;3\right\}\)
b1
a) tìm các số tự nhiên a,biết rằng a chia hết cho 9 và 105<a<120
b) tìm các số tự nhiên b ,biết rằng b chia hết cho 2 và 5 và 93<b<111
b2
số tự nhiên a chia hết cho số tự nhiên được thương là 12 dư 4 hỏi số a có chia hết cho 6 ko? vì sao
b3
tỉm số tự nhiên a nhỏ nhất biết rằng khi chia a cho 17 thì dư 8 chia cho 25 dư 16
chứng minh rằng số a=10n +18.n-1 chia hết cho 27 (với n là số tự nhiên tùy ý)
Bài 1: a) => tập hợp a = { 108;117 }
b) => tập hợp b = { 90;100;110 }