Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2019 lúc 12:17

C = 5 x - x 2 = - x 2 - 5 x = - x 2 - 2 . 5 / 2   x + 5 / 2 2 - 5 / 2 2 = - x - 5 / 2 2 - 25 / 4 = - x - 5 / 2 2 + 25 / 4 V ì - x - 5 / 2 2 ≤ 0 ⇒ - x - 5 / 2 2 + 25 / 4 ≤ 25 / 4

Suy ra: C ≤ 25/4 .

C = 25/4 khi và chỉ khi x - 5/2 = 0 suy ra x = 5/2

Vậy C = 25/4 là giá trị lớn nhất tại x = 5/2 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 1 2018 lúc 15:50

Ta có: A =  x 2 - 6 x + 11  =  x 2 - 2 . 3 x + 9 + 2  = x - 3 2 + 2

Vì x - 3 2  ≥ 0 nên  x - 3 2  + 2 ≥ 2

Suy ra: A ≥ 2.

A = 2 khi và chỉ khi x - 3 = 0 suy ra x = 3

Vậy A = 2 là giá trị nhỏ nhất của biểu thức tại x =3.

Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 9:36

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

d) Ta có: \(x^2+12x+39\)

\(=x^2+12x+36+3\)

\(=\left(x+6\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-6

e) Ta có: \(-x^2-12x\)

\(=-\left(x^2+12x+36-36\right)\)

\(=-\left(x+6\right)^2+36\le36\forall x\)

Dấu '=' xảy ra khi x=-6

f) Ta có: \(4x-x^2+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 9:39

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=1

Nguyễn Ngọc Lộc
2 tháng 7 2021 lúc 9:46

( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )

a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)

\(=\left(5x-2\right)^2+3\)

Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)

Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)

b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)

Vậy Min = 1 <=> x = 1/3

c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)

Vậy Max = -1 <=> x = 1

d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)

Vậy Min = 3 <=> x = - 6

e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)

Vậy Max = 36 <=> x = -6 .

f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

Vậy Max = 5 <=> x = 2

Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 14:01

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

Nguyễn Quang Minh
Xem chi tiết
Trí Tiên亗
7 tháng 3 2020 lúc 10:52

Bài này là GTNN nhé :

Ta có : \(\left|6-2x\right|\ge0\forall x\)

\(\Rightarrow\left|6-2x\right|-5\ge-5\forall x\)

Hay : \(B\ge-5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|6-2x\right|=0\)

\(\Leftrightarrow x=3\)

Vậy : min \(B=-5\) tại \(x=3\)

Khách vãng lai đã xóa
quyền công
Xem chi tiết
Yen Nhi
21 tháng 6 2022 lúc 21:50

\(A=\left(x-4\right)^2+1\)

Ta có: \(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+1\ge1\Rightarrow A\ge1\)

\(A_{min}=1\Leftrightarrow x=4\)

\(B=\left|3x-2\right|-5\)

Ta có: \(\left|3x-2\right|\ge0\Rightarrow\left|3x-2\right|-5\ge-5\Rightarrow B\ge-5\)

\(B_{min}=-5\Leftrightarrow x=\dfrac{2}{3}\)

\(C=5-\left(2x-1\right)^4\)

Ta có: \(\left(2x-1\right)^4\ge0\forall x\Rightarrow-\left(2x-1\right)^4\le0\forall x\Rightarrow5-\left(2x-1\right)^4\le5\Rightarrow C\le5\)

\(C_{max}=5\Leftrightarrow x=\dfrac{1}{2}\)

\(D=-3\left(x-3\right)^2-\left(y-1\right)^2-2021\)

Ta có: \(\left\{{}\begin{matrix}-3\left(x-3\right)^2\le0\forall x\\-\left(y-1\right)^2\le0\forall y\end{matrix}\right.\Rightarrow-3\left(x-3\right)^2-\left(y-1\right)^2\le0\forall x,y\Rightarrow-3\left(x-3\right)^2-\left(y-1\right)^2-2021\le-2021\Rightarrow D\le-2021\)

 

\(D_{max}=-2021\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

\(E=-\left|x^2-1\right|-\left(x-1\right)^2-y^2-2020\)

\(=-\left|\left(x-1\right)\left(x+1\right)\right|-\left(x-1\right)^2-y^2-2020\)

Ta có: \(\left\{{}\begin{matrix}\left|\left(x-1\right)\left(x+1\right)\right|\ge0\forall x\Rightarrow-\left|\left(x-1\right)\left(x+1\right)\right|\le0\\\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\\y^2\ge0\Rightarrow-y^2\le0\end{matrix}\right.\Rightarrow E\le-2020\)

\(E_{max}=-2020\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

 

Nguyễn Mai Anh
Xem chi tiết

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 9:35

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

Tuyết Ly
Xem chi tiết
Kagamine Len
Xem chi tiết
_Guiltykamikk_
16 tháng 3 2018 lúc 17:23

do \(\left(2x-3\right)^4\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^4-2\ge-2\forall x\)

Dấu "=" xảy ra khi:

\(2x-3=0\Rightarrow x=\frac{3}{2}\)

Vậy giá trị nhỏ nhất của biểu thứ là -2 khi \(x=\frac{3}{2}\)

Arima Kousei
16 tháng 3 2018 lúc 17:18

Ta có :          \(\left(2x-3\right)^4\ge0\)

               \(\Rightarrow\left(2x-3\right)^4-2\ge-2\)

  Dấu " = " xảy ra \(\Leftrightarrow\)  \(\left(2x-3\right)^4=0\Leftrightarrow\left(2x-3\right)=0\)

                           \(\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)  

                          

Phùng Minh Quân
16 tháng 3 2018 lúc 17:20

Tìm GTNN : 

Ta có : 

\(\left(2x-3\right)^4\ge0\)\(\left(\forall x\inℤ\right)\)

\(\Rightarrow\)\(\left(2x-3\right)-2\ge-2\)

Dấu "=" xảy ra khi \(\left(2x-3\right)^4=0\)

\(\Leftrightarrow\)\(2x-3=0\)

\(\Leftrightarrow\)\(2x=3\)

\(\Leftrightarrow\)\(x=\frac{3}{2}\)

Vậy GTNN của biểu thức \(\left(2x-3\right)^4-2=-2\) khi \(x=\frac{3}{2}\)

Chúc bạn học tốt ~