Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
panda8734
Xem chi tiết
Akai Haruma
3 tháng 2 2024 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Akai Haruma
3 tháng 2 2024 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Akai Haruma
3 tháng 2 2024 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

キエット
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 19:54

1. Không dịch được đề

2.

\(-1\le cos2x\le1\Rightarrow1\le y\le3\)

3.

a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)

\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

b.

\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)

\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)

\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

4.

\(y=\left(tanx-1\right)^2+2\ge2\)

\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 8 2018 lúc 7:44

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 2 2019 lúc 18:08

Ta có y = x 2 + 2 x + a - 4 = x + 1 2 + a - 5  

Đặt u = x + 1 2  khi đó ∀ x ∈ - 2 ; 1  thì u ∈ 0 ; 4  

Ta được hàm số f u = u + a - 5  

Khi đó

M a x x ∈ - 2 ; 1 y = M a x x ∈ 0 ; 4 f u = M a x f 0 , f 4 = M a x a - 5 ; a - 1  

Trường hợp 1:

  a - 5 ≤ a - 1 ⇔ a ≤ 3 ⇒ M a x x ∈ 0 ; 4 f u = 5 - a ≥ 2 ⇔ a = 3

Trường hợp 2:

  a - 5 ≤ a - 1 ⇔ a ≥ 3 ⇒ M a x x ∈ 0 ; 4 f u = a - 1 ≥ 2 ⇔ a = 3

Vậy giá trị nhỏ nhất của M a x x ∈ - 2 ; 1 y = 2 ⇔ a = 3

Đáp án A

Thành Dương
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 22:51

Tham khảo:

Đỉnh S có tọa độ: \({x_S} = \dfrac{{ - b}}{{2a}} = \dfrac{{ - 2}}{{2.1}} =  - 1;\,{y_S} = {\left( { - 1} \right)^2} + 2.( - 1) + 3 = 2.\)

Hay \(S\left( { - 1;2} \right).\)

Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:

Hàm số đạt giá trị nhỏ nhất bằng \(2\).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 7 2017 lúc 3:20

Đáp án C

Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .

Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3  trên R

* Bước 1: Tập xác định D = ℝ . Đạo hàm  y ' = 8 x 3 − 8 x   .

* Bước 2: Cho   y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .

* Bước 3: Ta có bảng biến thiên sau:

Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 2 2017 lúc 16:09

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 3 2018 lúc 6:40

Trên đoạn [-1; 1], ta có :

y = log 5 x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, trên đoạn [0;1] hàm số đồng biến, trên đoạn [-1;0] hàm số nghịch biến. Suy ra các giá trị lớn nhất và giá trị nhỏ nhất sẽ đạt được tại các đầu mút.

Ta có: y(−1) = 2 - - 1  =  2 1  = 2, y(0) =  2 0  = 1, y(1) =  2 1  = 2

Vậy max y = y(1) = y(−1) = 2, min y = y(0) = 1.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 9 2019 lúc 6:56

Trên đoạn [-1; 1], ta có :

y = log 5 x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, trên đoạn [0;1] hàm số đồng biến, trên đoạn [-1;0] hàm số nghịch biến. Suy ra các giá trị lớn nhất và giá trị nhỏ nhất sẽ đạt được tại các đầu mút.

Ta có: y(−1) = 2 - ( - 1 )  = 2 1  = 2, y(0) = 2 0  = 1, y(1) = 2 1  = 2

Vậy max y = y(1) = y(−1) = 2, min y = y(0) = 1.