tìm gtnn của biểu thức a=4x^2-8x+1
Tìm GTNN của các biểu thức. a) A = 4x^2 - 8x + 5 b) B = 9x^2 + 6x + 4
A= 4(x-2)^2 - 9 >= -9
Min A=-9 khi x=2
B= 9(x+1/3)^2 +3 >=3
Min B=3 khi x= -1/3
Cho x là số thực khác 0. Tìm GTNN của biểu thức A = \(8x^2-4x+\frac{1}{4x^2}+2015\)
\(A=8x^2-4x+\frac{1}{4x^2}+2015\)
\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\)
\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(2x-1\right)^2+2014\)
Áp dụng bđt AM - GM ta có : \(4x^2+\frac{1}{4x^2}\ge2\sqrt{4x^2.\frac{1}{4x^2}}=2\)
\(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)\ge2\)
\(\Rightarrow A=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\ge2016\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x^2=\frac{1}{4x^2}\\\left(2x-1\right)^2=0\end{cases}}\) \(\Rightarrow x=\frac{1}{2}\)
Vậy \(A_{min}=2016\) tại \(x=\frac{1}{2}\)
tìm GTNN của biểu thức A= 2x2-8x+1
Tìm GTLN của B = -5x2-4x+1
cảm ơn nha^^
a: Ta có: \(A=2x^2-8x+1\)
\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=2
Tính gTNN của biểu thức A= 8x^2-4x+1/4x^2+2015
Tìm GTLN của biểu thức:
A=-x^2+6x-15
B=-2x^2+8x-15
C=-3^2+2x-1
D=-5x^2-25x+49
Tìm GTNN của biểu thức:
A=x^2-4x+7
B=x^2+8x
C=2x^2+4x+15
D=3x^2-2x-1
Tìm GTLN:
\(A=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x^2-2.x.3+9+6\right)\)
\(=-\left(x+3\right)^2-6\le0\forall x\)
Dấu = xảy ra khi:
\(x-3=0\Leftrightarrow x=3\)
Vậy Amax = - 6 tại x = 3
Tìm GTNN :
\(A=x^2-4x+7\)
\(=x^2+2.x.2+4+3\)
\(=\left(x+2\right)^2+3\ge0\forall x\)
Dấu = xảy ra khi:
\(x+2=0\Leftrightarrow x=-2\)
Vậy Amin = 3 tại x = - 2
Các câu còn lại làm tương tự nhé... :)
Tìm GTLH và GTNN của biểu thức: \(A=\frac{8x+3}{4x^2+1}\)
Tách các hạng tử ở tử sao cho có cùng một nhóm giống mẫu. Khi đó, thì bài dễ rồi!
1.Tìm GTNN của các biểu thức sau
a,A=x^2+4x+17 b,B=x^2-8x+100 c,C=x^2+x+5
2,Tìm GTLN của các biểu thức sau
a,A=-x^2+12x+20 b,B=-x^2-6x+7 c,C=-x^2+x+1
2:
a: =-(x^2-12x-20)
=-(x^2-12x+36-56)
=-(x-6)^2+56<=56
Dấu = xảy ra khi x=6
b: =-(x^2+6x-7)
=-(x^2+6x+9-16)
=-(x+3)^2+16<=16
Dấu = xảy ra khi x=-3
c: =-(x^2-x-1)
=-(x^2-x+1/4-5/4)
=-(x-1/2)^2+5/4<=5/4
Dấu = xảy ra khi x=1/2
1)
a) \(A=x^2+4x+17\)
\(A=x^2+4x+4+13\)
\(A=\left(x+2\right)^2+13\)
Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)
Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)
Vậy: \(A_{min}=13\) khi \(x=-2\)
b) \(B=x^2-8x+100\)
\(B=x^2-8x+16+84\)
\(B=\left(x-4\right)^2+84\)
Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)
Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)
Vậy: \(B_{min}=84\) khi \(x=4\)
c) \(C=x^2+x+5\)
\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)
1,Tìm GTNN của các biểu thức sau
a,A=x^2+4x+17 b,B=x^2-8x+100 c,C=x^2+x+5
2,Tìm GTLN của các biểu thức sau
a,A=-x^2+12x+20 b,B=-x^2-6x+7 c,C=-x^2+x+1
1:
a: A=x^2+4x+4+13
=(x+2)^2+13>=13
Dấu = xảy ra khi x=-2
b; =x^2-8x+16+84
=(x-4)^2+84>=84
Dấu = xảy ra khi x=4
c: =x^2+x+1/4+19/4
=(x+1/2)^2+19/4>=19/4
Dấu = xảy ra khi x=-1/2
A. C/m rằng A= \(x^2-2x+5\)luôn dương với mọi x
B. Tìm GTNN của biểu thức B=\(4x^2+4x+11\)
C. Tìm GTNN của biểu thức C=\(5-8x-x^2\)
a) \(A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)
b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được
\(B=4x^2+4x+11\)
\(=4\left(x^2+x+\frac{11}{4}\right)\)
\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)
\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)
\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)
c) Tìm GTLN nhé
\(C=5-8x-x^2\)
\(=-x^2-2.x.4-16+16+5\)
\(=-\left(x+4\right)^2+21\)
Vì \(-\left(x+4\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)
Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x=-4\)
Vậy\(C_{max}=21\Leftrightarrow x=-4\)
A = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
B = 4x2 + 4x + 11
= ( 4x2 + 4x + 1 ) + 10
= ( 2x + 1 )2 + 10 ≥ 10 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = 10 <=> x = -1/2
C = 5 - 8x - x2
= -( x2 + 8x + 16 ) + 21
= -( x + 4 )2 + 21 ≤ 21 ∀ x
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> MaxC = 21 <=> x = -4
\(A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\ge4>0\forall x\)
\(\Rightarrowđpcm\)
\(B=4x^2+4x+11\)
\(=\left[\left(2x\right)^2+2.2x+1\right]+10\)
\(=\left(2x+1\right)^2+10\ge10\forall x\)
Dấu"="xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=\frac{-1}{2}\)
\(Min_B=10\Leftrightarrow x=\frac{-1}{2}\)