Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Nữ Ái Phương
Xem chi tiết
Minh Hiếu
9 tháng 8 2021 lúc 15:16

A= 4(x-2)^2 - 9 >= -9

Min A=-9 khi x=2

B= 9(x+1/3)^2 +3 >=3

Min B=3 khi x= -1/3

TS Minh Quan
Xem chi tiết
Đinh Đức Hùng
29 tháng 11 2017 lúc 21:55

\(A=8x^2-4x+\frac{1}{4x^2}+2015\)

\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\)

\(=\left(4x^2+\frac{1}{4x^2}\right)+\left(2x-1\right)^2+2014\)

Áp dụng bđt AM - GM ta có : \(4x^2+\frac{1}{4x^2}\ge2\sqrt{4x^2.\frac{1}{4x^2}}=2\)

\(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)\ge2\)

\(\Rightarrow A=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+2014\ge2016\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x^2=\frac{1}{4x^2}\\\left(2x-1\right)^2=0\end{cases}}\) \(\Rightarrow x=\frac{1}{2}\)

Vậy \(A_{min}=2016\) tại \(x=\frac{1}{2}\)

Nguyen Minh Hieu
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 19:37

a: Ta có: \(A=2x^2-8x+1\)

\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x=2

Nguyen Minh Hieu
21 tháng 10 2021 lúc 19:57

bạn làm rõ ra dc ko mik ko hiểu

 

Không Có Tên
Xem chi tiết
thiên thần
Xem chi tiết
๖ۣۜNɦσƙ ๖ۣۜTì
1 tháng 7 2019 lúc 14:44

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

thiên thần
2 tháng 7 2019 lúc 15:35

giải hết i

lê song trí
Xem chi tiết
Phước Nguyễn
28 tháng 3 2016 lúc 8:48

Tách các hạng tử ở tử sao cho có cùng một nhóm giống mẫu. Khi đó, thì bài dễ rồi!

nghia
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 13:47

2:

a: =-(x^2-12x-20)

=-(x^2-12x+36-56)

=-(x-6)^2+56<=56

Dấu = xảy ra khi x=6

b: =-(x^2+6x-7)

=-(x^2+6x+9-16)

=-(x+3)^2+16<=16

Dấu = xảy ra khi x=-3

c: =-(x^2-x-1)

=-(x^2-x+1/4-5/4)

=-(x-1/2)^2+5/4<=5/4

Dấu = xảy ra khi x=1/2

HT.Phong (9A5)
27 tháng 7 2023 lúc 13:58

1) 

a) \(A=x^2+4x+17\)

\(A=x^2+4x+4+13\)

\(A=\left(x+2\right)^2+13\) 

Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)

Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)

Vậy: \(A_{min}=13\) khi \(x=-2\)

b) \(B=x^2-8x+100\)

\(B=x^2-8x+16+84\)

\(B=\left(x-4\right)^2+84\)

Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)

Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)

Vậy: \(B_{min}=84\) khi \(x=4\)

c) \(C=x^2+x+5\)

\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)

\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)

nghia
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 21:23

1:

a: A=x^2+4x+4+13

=(x+2)^2+13>=13

Dấu = xảy ra khi x=-2

b; =x^2-8x+16+84

=(x-4)^2+84>=84

Dấu = xảy ra khi x=4

c: =x^2+x+1/4+19/4

=(x+1/2)^2+19/4>=19/4

Dấu = xảy ra khi x=-1/2

 

Nguyễn Bá Thông
Xem chi tiết
Lê Tài Bảo Châu
18 tháng 9 2020 lúc 0:42

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
18 tháng 9 2020 lúc 6:23

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4

Khách vãng lai đã xóa
FL.Han_
18 tháng 9 2020 lúc 15:07

\(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\ge4>0\forall x\)

\(\Rightarrowđpcm\)

\(B=4x^2+4x+11\)

\(=\left[\left(2x\right)^2+2.2x+1\right]+10\)

\(=\left(2x+1\right)^2+10\ge10\forall x\)

Dấu"="xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=\frac{-1}{2}\)

\(Min_B=10\Leftrightarrow x=\frac{-1}{2}\)

Khách vãng lai đã xóa