Giải phương trình: \(x\sqrt[3]{35-x^3}\left(x+\sqrt[3]{35-x^3}\right)=30\)
Giải phương trình: \(x\sqrt[3]{35-x^2}\left(x+\sqrt[3]{35-x^2}\right)=30\)
giải phương trình
\(x\sqrt[3]{35-x^3}\left(x+\sqrt[3]{35-x^3}\right)=30\)
\(^{x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}}\)
\(x+\sqrt{x+\sqrt{x-1}}=6\)
a)iải phương trình sau: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán
b)giải pt: x^2 + 3x+1=(x+3)căn(x^2+1)? | Yahoo Hỏi & Đáp
c)chuyển vế bình
Giải phương trình:
a, \(\sqrt[3]{x^2-1}+x=\sqrt{x^3-2}\)
b, \(x\sqrt[3]{35-x^3}.\left(x+\sqrt[3]{35-x^3}\right)=30\)
a/ ĐKXĐ: \(x\ge\sqrt[3]{2}\)
\(\Leftrightarrow\sqrt{x^3-2}-\left(2x-1\right)+x-1-\sqrt[3]{x^2-1}=0\)
\(\Leftrightarrow\frac{x^3-2-\left(2x-1\right)^2}{\sqrt{x^3-2}+2x-1}+\frac{\left(x-1\right)^3-\left(x^2-1\right)}{\left(x-1\right)^2+\left(x-1\right)\sqrt[3]{x^2-1}+\sqrt[3]{\left(x^2-1\right)^2}}=0\)
\(\Leftrightarrow\frac{x^3-4x^2+4x-3}{\sqrt{x^3-2}+2x-1}+\frac{x^3-4x^2+3x}{\left(x-1\right)^2+\left(x-1\right)\sqrt[3]{x^2-1}+\sqrt[3]{\left(x^2-1\right)^2}}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2-x+1\right)}{\sqrt{x^3-2}+2x-1}+\frac{\left(x-3\right)\left(x^2-x\right)}{\left(x-1\right)^2+\left(x-1\right)\sqrt[3]{x^2-1}+\sqrt[3]{\left(x^2-1\right)^2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2-x+1}{\sqrt{x^3-2}+2x-1}+\frac{x^2-x}{\left(x-1\right)^2+\left(x-1\right)\sqrt[3]{x^2-1}+\sqrt[3]{\left(x^2-1\right)^2}}\right)=0\)
\(\Rightarrow x=3\)
b/ Đặt \(\sqrt[3]{35-x^3}=a\)
\(\Rightarrow\left\{{}\begin{matrix}ax\left(a+x\right)=30\\x^3+a^3=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3ax\left(a+x\right)=90\\x^3+a^3=35\end{matrix}\right.\)
\(\Rightarrow x^3+a^3+3ax\left(a+x\right)=125\)
\(\Leftrightarrow\left(x+a\right)^3=125\)
\(\Leftrightarrow x+a=5\)
\(\Leftrightarrow a=5-x\)
\(\Leftrightarrow\sqrt[3]{35-x^3}=5-x\)
\(\Leftrightarrow35-x^3=125-75x+15x^2-x^3\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow...\)
giải hệ phương trình\(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=30\\x\sqrt{x}+y\sqrt{y}=35\end{matrix}\right.\)
Phương pháp 2. Biến đổi về phương trình tích
a \(\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
b \(2\sqrt[3]{\left(x+3\right)^2}-\sqrt[3]{\left(x-3\right)^2}=\sqrt[3]{x^2-9}\)
c \(\sqrt{2x+1}+3\sqrt{4x^2-2x+1}=3+\sqrt{8x^3+1}\)
d \(14\sqrt{x+35}+6\sqrt{x+1}=84+\sqrt{x^2+36x+35}\)
a) ĐK: \(x\ge3\)
PT \(\Leftrightarrow\sqrt{\left(x-3\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+1}-\sqrt{\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-3}-1\right)+\sqrt{x+1}\left(1-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+1}\right)\left(\sqrt{x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+1}\\\sqrt{x-3}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=x+1\\x-3=1\end{matrix}\right.\) \(\Leftrightarrow x=4\) (Thỏa mãn)
Vậy ...
\(x\sqrt[3]{35-x^3}\times\left(x+\sqrt[3]{35-x^3}\right)=30\)
\(CMR:A=\frac{1}{\left(\sqrt{1}+\sqrt{3}\right)^3}+\frac{1}{\left(\sqrt{3}+\sqrt{5}\right)^3}+...+\frac{1}{\left(\sqrt{2003}+\sqrt{2005}\right)^3}< \frac{246}{2007}\)
\(\sqrt[3]{35-x^3}\left(x+\sqrt[3]{35-x^3}\right)=30\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x\left(\sqrt{y+4}+\sqrt{y+11}\right)=35\\y\left(\sqrt{x+4}+\sqrt{x+11}\right)=35\end{matrix}\right.\)
Đề thi chuyên SP hả em, bài này sử dụng Liên hợp với đánh giá em nhé:
Đầu tiên trừ 2 về mình có là
\(x\sqrt{y+4}+x\sqrt{y+11}-y\sqrt{x+4}-y\sqrt{x+11}=0\)
Từ hệ mình dễ dàng suy ra đc x,y>0
Anh liên hợp cho 1 cái nha
\(x\sqrt{y+4}-y\sqrt{x+4}=\sqrt{x^2y+4x^2}-\sqrt{y^2x+4y^2}=\dfrac{x^2y-y^2x+4x^2-4y^2}{\sqrt{.........}+\sqrt{.......}}=\left(x-y\right).\dfrac{xy+4x+4y}{\sqrt{.........}+\sqrt{............}}\)
Cái kia em cx liên hợp tương tự, đặt x-y của cả 2 cái khi liên hợp xong phương trình sẽ là
\(\left(x-y\right)\left(\dfrac{xy+4x+4y}{\sqrt{...}+\sqrt{...}}+\dfrac{xy+11x+11y}{\sqrt{........}+\sqrt{.....}}\right)=0\) Cái trong ngoặc to đùng hiển nhiên >0 với x,y>0. DO đó x-y=0 hay x=y
EM thế vào phương trình ban đầu thì có \(x\sqrt{x+4}+x\sqrt{x+11}=35\)
Đến đây thì nhẩm đc x=5 thoả mãn em giải bằng đánh giá:
Với x=5 suy ra......=35
Với x>5 suy ra......>35
Với x<5 suy ra.....<35
Kết luận đc x=5, do đó y=5
Note: hướng làm em nhé, bổ sung thêm điều kiện xác định linh tinh zô
Giải bất phương trình: \(\sqrt[4]{\left(x-2\right).\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\le x^3+30\)