Mn giúp mk với, mk đag gấp lắm
Tìm x,y biết:
\(\dfrac{x-1}{2}=\dfrac{2y-3}{5}\)và 5x-6y=-16
Tìm giá trị nhỏ nhất của biểu thức sau :
\(A=|2x-\dfrac{1}{3}|-1\dfrac{3}{4}\)
\(B=\dfrac{1}{3}|x-2|+|3-\dfrac{1}{2}y|+4\)
Giúp mk với ! Mk cần gấp lắm !!!
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
câu 1:
a) 4x-5=23 b) |-2x|=5x+14 c) \(\dfrac{x+1}{x-1}\)-\(\dfrac{1}{x+1}\)=\(\dfrac{x^2+2}{x^2-1}\)
mn giúp mk vs, mk cần gấp
Câu 1 :
a. \(4x-5=23\\ \Leftrightarrow4x=23+5\\ \Leftrightarrow4x=28\\ \Leftrightarrow x=7\)
b.
|-2x|=5x+14
Nếu - 2x > 0 => x < 0 thì |-2x|= - 2x, ta có pt: -2x = 5x+14
<=> - 2x = 5x + 14
<=> - 2x - 5x = 14
<=> - 7x = 14
<=> x = - 2 (thoã mãn)
Nếu - 2x < 0 => x > 0 thì |-2x|= = -(- 2x) = 2x.
Ta có pt: 2x = 5x + 14
<=> - 3x = 14
<=> x = \(-\dfrac{14}{3}\)
Vậy pt có nghiệm x = - 2
c) \(\dfrac{x+1}{x-1}-\dfrac{1}{x+1}=\dfrac{x^2+2}{x^2-1}\\ ĐKXĐ:x\ne1;x\ne-1\\ \Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{1\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+2}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow x^2+x+x+1-x+1=x^2+2\\ \Leftrightarrow x^2+x+x-x-x^2=2-1-1\\ \Leftrightarrow x=0\left(nhận\right)\)
\(a,4x-5=23\)
\(\Leftrightarrow4x=23+5\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
\(b,\left|-2x\right|=5x+14\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5x+14\\2x=-5x-14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x-14=0\\7x+14=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=14\\7x=-14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{14}{3}\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{14}{3};-2\right\}\)
\(c,\Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)-x+1-x^2-2}{x^2-1}=0\)
\(\Leftrightarrow x^2+x+x+1-x+1-x^2-2=0\)
\(\Leftrightarrow x=0\)
Vậy \(S=\left\{0\right\}\)
a) \(4x-5=23\)
\(4x=23+5\)
\(4x=28\)
\(x=7\)
b) \(\left|-2x\right|=5x+14\)
\(\Leftrightarrow\) \(-2x-5=14\)
\(\Leftrightarrow\) \(-7x=14\)
\(\Leftrightarrow\) \(x=-2\)
\(\Leftrightarrow\) \(-2x=-\left(5x+14\right)\)
\(\Leftrightarrow\) \(-2x=-\left(5x-14\right)\)
\(\Leftrightarrow\) \(-2x+5x=-14\)
\(\Leftrightarrow\) \(3x=-14\)
\(\Leftrightarrow\) \(x=-\dfrac{14}{3}\) \(\left(\text{vô lí}\right)\)
\(\Leftrightarrow x=-2\)
c) \(\dfrac{x+1}{x-1}-\dfrac{1}{x+1}=\dfrac{x^2+2}{x^2-1}\)
\(\Leftrightarrow\) \(\dfrac{x+1}{x-1}+\dfrac{-1}{x+1}=\dfrac{x^2+2}{\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)+\left(-1\right)\left(x-1\right)=x^2+2\)
\(\Leftrightarrow x^2+x+2=x^2+2\)
\(\Leftrightarrow x+2=2\)
\(\Leftrightarrow x=0\)
tìm cặp x , y thuộc N biết :
a) ( x - 3 ) . ( y + 5 ) = 13
b) ( 3x - 1 ) . ( y + 2 ) = 16
c) ( 4 - x ) .( 2y - 1 ) = 9
các bạn làm giúp mk nha mk cần gấp lắm , ai làm xong và đúng mk tick cho 2 like luôn
chỉ mk với các bạn mk đang cần gấp lắm
\(\dfrac{1}{2022}x\dfrac{2}{5}+\dfrac{1}{2022}x\dfrac{7}{5}-\dfrac{1}{2022}x\dfrac{8}{10}\)
cố gắng giải giúp mk nhé các bạn !!!!
\(\dfrac{1}{2022}\) \(\times\) \(\dfrac{2}{5}\) + \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{7}{5}\) - \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{8}{10}\)
= \(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{2}{5}\) + \(\dfrac{7}{5}\) - \(\dfrac{8}{10}\))
= \(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{9}{5}\) - \(\dfrac{4}{5}\))
= \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{5}{5}\)
= \(\dfrac{1}{2022}\times1\)
= \(\dfrac{1}{2022}\)
Tìm x;y;z biết :
1) \(\dfrac{1+2y}{6}=\dfrac{3+4y}{5}=\dfrac{9+6y}{2x+1}\)
2) \(\dfrac{1+2y}{18}=\dfrac{1+4y}{28}=\dfrac{1+6y}{6x}\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{1+2y}{18}=\dfrac{1+6y}{6x}=\dfrac{1+2y+1+6y}{18+6x}=\dfrac{2\left(1+4y\right)}{2\left(9+3x\right)}=\dfrac{1+4y}{9+3x}\)
⇒ \(\dfrac{1+4y}{9+3x}=\dfrac{1+4y}{28}\)
⇒\(9+3x=28\)
⇒\(3x=19\)
⇒\(x=\dfrac{19}{3}\)
bạn thay vào là tìm được y
Thu gọn biểu thức sau rồi cho biết hệ số phần biến và bậc
\(\left(-z^2y^4\right)^2+\left(-\dfrac{2}{5}z^2y\right).\left(5x^2y^7\right).\left(\dfrac{4}{5}x^2y^5\right)^0-\left(\dfrac{9}{10}z^5y^7-z^4y^8\right)\)
CÁC BẠN GIÚP MK NHÉ MK CẦN GẤP LẮM!!!!!!!!!!!!!
\(\left(-z^2y^4\right)^2+\left(-\dfrac{2}{5}z^2y\right)\cdot\left(5x^2y^7\right)\cdot\left(\dfrac{4}{5}x^2y^5\right)^0-\left(\dfrac{9}{10}z^5y^7-z^4y^8\right)\\ =-z^4y^8-\dfrac{2}{5}z^2y\cdot5x^2y^7\cdot1-\dfrac{9}{10}z^5y^7+z^4y^8\\ =\left(-z^4y^8+z^4y^8\right)-2z^2x^2y^8-\dfrac{9}{10}z^5y^7\\ =-2x^2y^8z^2-\dfrac{9}{10}z^5y^7\)
\(\left\{{}\begin{matrix}\dfrac{2y-5x}{3}+5=\dfrac{y+27}{4}-2x\\\dfrac{x+1}{3}+y=\dfrac{6y-5x}{7}\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của
a) A=\(x^2-6x+10\)
b) B=\(3x^2+x-2\)
c) C=\(\dfrac{4}{x^2}-\dfrac{3}{x}-1\)
d) D=\(x^2+y^2-x+3y+7\)
Lm nhanh giúp mk nhé! Mk đang cần gấp lắm
a) \(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\). \(min_A=1\)
b) \(B=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x-\dfrac{2}{3}\right)=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}-\dfrac{25}{36}\right)=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{25}{12}\ge\dfrac{-25}{12}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{6}\). \(min_B=\dfrac{-25}{12}\)
c) \(C=\dfrac{4}{x^2}-\dfrac{3}{x}-1=\left(\dfrac{4}{x^2}-\dfrac{3}{x}+\dfrac{9}{16}\right)-\dfrac{25}{16}=\left(\dfrac{2}{x}+\dfrac{2}{3}\right)^2-\dfrac{25}{16}\ge\dfrac{-25}{16}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-3\). \(min_C=\dfrac{-25}{16}\)
d) \(D=x^2+y^2-x+3y+7=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{9}{2}=\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\). \(min_D=\dfrac{9}{2}\)
Giải hpt:
a)\(\left\{{}\begin{matrix}\dfrac{2y-5x}{3}+5=\dfrac{y+27}{4}-2x\\\dfrac{x+1}{3}+y=\dfrac{6y-5x}{7}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{2}{x+2y}+\dfrac{1}{y+2x}=3\\\dfrac{4}{x+2y}-\dfrac{3}{y+2x}=1\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
a: \(\left\{{}\begin{matrix}\dfrac{-5x+2y}{3}+5=\dfrac{y+27}{4}-2x\\\dfrac{x+1}{3}+y=\dfrac{6y-5x}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4\left(-5x+2y\right)+60=3\left(y+27\right)-24x\\7\left(x+1\right)+21y=3\left(6y-5x\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-20x+8y+60=3y+81-24x\\7x+7+21y=18y-15x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-20x+8y-3y+24x=21\\7x+21y-18y+15x=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+5y=21\\22x+3y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x+15y=63\\110x+15y=-35\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-98x=98\\4x+5y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\5y=21-4x=21+4=25\end{matrix}\right.\)
=>x=-1 và y=5
b: \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(xy+3x+2y+6\right)-\dfrac{1}{2}xy=50\\\dfrac{1}{2}xy-\dfrac{1}{2}\left(xy-2x-2y+4\right)=32\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}xy+3x+2y+6-xy=100\\xy-\left(xy-2x-2y+4\right)=64\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+2y=94\\2x+2y=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=34\\2x+2y=60\end{matrix}\right.\)
=>x=34 và y=-4
c: \(\left\{{}\begin{matrix}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{matrix}\right.\)
\(\left\{{}\begin{matrix}xy-x+20y-20=xy\\xy+x-10y-10=xy\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x+20y=20\\x-10y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10y=30\\x-10y=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3\\x=10y+10=30+10=40\end{matrix}\right.\)
d: ĐKXĐ: \(\left\{{}\begin{matrix}x< >-2y\\x< >-\dfrac{y}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2}{x+2y}+\dfrac{1}{2x+y}=3\\\dfrac{4}{x+2y}-\dfrac{3}{2x+y}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{4}{x+2y}+\dfrac{2}{2x+y}=6\\\dfrac{4}{x+2y}-\dfrac{3}{2x+y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2x+y}=5\\\dfrac{4}{x+2y}-\dfrac{3}{2x+y}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+y=1\\\dfrac{4}{x+2y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=1\\x+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+y=1\\2x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=1-2y=1-\dfrac{2}{3}=\dfrac{1}{3}\end{matrix}\right.\)(nhận)
e: ĐKXĐ: x<>-1 và y<>-4
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4\\2-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{2}{y+4}=-1\\\dfrac{2}{x+1}+\dfrac{5}{y+4}=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{6}{x+1}+\dfrac{4}{y+4}=-2\\\dfrac{6}{x+1}+\dfrac{15}{y+4}=-21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{11}{y+4}=19\\\dfrac{3}{x+1}+\dfrac{2}{y+4}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y+4=-\dfrac{11}{19}\\\dfrac{3}{x+1}+2:\dfrac{-11}{19}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{11}{19}-4=-\dfrac{87}{19}\\\dfrac{3}{x+1}=-1-2:\dfrac{-11}{19}=\dfrac{27}{11}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x+1=\dfrac{11}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{9}\\y=-\dfrac{87}{19}\end{matrix}\right.\left(nhận\right)\)