thương của phép chia A=\(\left(4x^2-4x+1\right)^2-5\left(2x-1\right)\) cho B= 1- 2x là bao nhiêu
Câu 1: Phân tích đa thức thành nhân tử
\(x^2-\left(y-3\right)^2-4x+4\)
Câu 2:
a) Thực hiện phép chia: \(\left(2x^4+8x^3+9x^2-4x-5\right):\left(2x^2-1\right)\)
b) Chứng tỏ thương của phép chia luôn luôn dương với mọi giá trị của x
\(x^2-\left(y-3\right)^2-4x+4\)
\(=x^2-\left(y^2-6y+9\right)-4x+4\)
\(=x^2-y^2+6y-9-4x+4\)
\(=\left(x^2-4x+4\right)-\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2-\left(y-3\right)^2\)
\(=\left[\left(x-2\right)-\left(y-3\right)\right]\left[\left(x-2\right)+\left(y-3\right)\right]\)
\(=\left(x-y+5\right)\left(x+y-5\right)\)
1.
x2 - ( y - 3 )2 - 4x + 4
= ( x2 - 4x + 4 ) - ( y - 3 )2
= ( x - 2 )2 - ( y - 3 )2
= [ ( x - 2 ) - ( y - 3 ) ][ ( x - 2 ) + ( y - 3 ) ]
= ( x - 2 - y + 3 )( x - 2 + y - 3 )
= ( x - y + 1 )( x + y - 5 )
2.
a) Ta có : 2x4 + 8x3 + 9x2 - 4x - 5
= 2x4 + 10x2 - x2 + 8x3 - 4x - 5
= ( 2x4 - x2 ) + ( 8x3 - 4x ) + ( 10x2 - 5 )
= x2( 2x2 - 1 ) + 4x( 2x2 - 1 ) + 5( 2x2 - 1 )
= ( 2x2 - 1 )( x2 + 4x + 5 )
=>(2x4 + 8x3 + 9x2 - 4x - 5) : ( 2x2 - 1 ) = x2 + 4x + 5
b) Ta có : x2 + 4x + 5 = ( x2 + 4x + 4 ) + 1 = ( x + 2 )2 + 1 ≥ 1 > 0 ∀ x
=> đpcm
Bài 2 . Thực hiện phép tính
a)\(6x^3\)\(\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)\)\(-2x^5\)\(-x^3\)
b)\(\left(x-3\right)\left(x^2+3x-2\right)\)
c)\(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
a: =2x^5-15x^3-x^2-2x^5-x^3=-16x^3-x^2
b: =x^3+3x^2-2x-3x^2-9x+6
=x^3-11x+6
c: \(=\dfrac{4x^3+2x^2-6x^2-3x-2x-1+5}{2x+1}\)
\(=2x^2-3x-1+\dfrac{5}{2x+1}\)
a) \(6x^3\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)-2x^5-x^3\)
\(=6x^3\left(\dfrac{1}{3}x^2-\dfrac{16}{6}\right)-2x^5-x^3\)
\(=2x^5-16x^3-2x^5-x^3\)
\(=-17x^3\)
b) \(\left(x+3\right)\left(x^2+3x-2\right)\)
\(=x^3+3x^2-2x+3x^2+9x-6\)
\(=x^3+6x^2+7x-6\)
c) \(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
\(=2x^2+4x^3-2x-4x^2-\dfrac{5}{2}-5x+\dfrac{2}{x}+4\)
\(=4x^3-2x^2-7x+\dfrac{2}{x}+\dfrac{3}{2}\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
a) Thực hiện phép chia :
\(\left(2x^4-4x^3+5x^2+2x-3\right):\left(2x^2-1\right)\)
b) Chứng tỏ rằng thương tìm được trong phép chia trên luôn luôn dương với mọi giá trị của \(x\)
Vậy thương tìm được luôn luôn dương với mọi giá trị của x.
tìm x:
a) \(\left(2x+5\right)\left(4x-10\right)+4x.\left(3-2x\right)^2=0\)
b) \(\left(2x-3\right)^2-\left(3x+1\right)^2=0\)
a: =>8x^2-20x+20x-50+4x(4x^2-12x+9)=0
=>8x^2-50+8x^3-48x^2+36x=0
=>8x^3-40x^2+36x-50=0
=>\(x\simeq4,29\)
b: =>(2x-3-3x-1)(2x-3+3x+1)=0
=>(-x-4)(5x-2)=0
=>x=2/5 hoặc x=-4
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)
Thực hiện các phép chia:
a,\(\left(x^2-3x-x+3\right):\left(x-3\right)\)
\(b,\left(2x^3-5x^2-4x+3\right):\left(2x-1\right)\)
\(\frac{x^2-3x-x+3}{x-3}=\frac{x\left(x-3\right)-\left(x-3\right)}{x-3}=\frac{\left(x-3\right)\left(x-1\right)}{x-3}=x-1\)( ĐK: \(x\ne3\))
\(\frac{2x^3-5x^2-4x+3}{2x-1}=\frac{\left(2x^3-x^2\right)-\left(4x^2-2x\right)-\left(6x-3\right)}{2x-1}=\frac{x^2\left(2x-1\right)-2x\left(2x-1\right)-3\left(2x-1\right)}{2x-1}=\frac{\left(2x-1\right)\left(x^2-2x-3\right)}{2x-1}=x^2-2x-3\)( ĐK: \(x\ne\frac{1}{2}\))
Tham khảo nhé~
Sắp xếp các đa thức sau theo lũy thừa giảm của biến rồi thực hiện phép chia :
a) \(\left(12x^2-14x+3-6x^3+x^4\right):\left(1-4x+x^2\right)\)
b) \(\left(x^5-x^2-3x^4+3x+5x^3-5\right):\left(5+x^2-3x\right)\)
c) \(\left(2x^2-5x^3+2x+2x^4-1\right):\left(x^2-x-1\right)\)
a: \(=\dfrac{x^4-6x^3+12x^2-14x+3}{x^2-4x+1}\)
\(=\dfrac{x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3}{x^2-4x+1}\)
\(=x^2-2x+3\)
b: \(=\dfrac{x^5-3x^4+5x^3-x^2+3x-5}{x^2-3x+5}=x^2-1\)
c: \(=\dfrac{2x^4-5x^3+2x^2+2x-1}{x^2-x-1}\)
\(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)