chứng tỏ rằng
x^2 + y^2 + z^2 + 2x -2y -2z + 3 > và = 0 với mọi số thực x, y , z
Chứng minh rằng: x2 + y2 + z2 + 2x + 2y + 2z + 3 >= 0 với mọi số thực x, y, z
x^2+y^2+z^2+2x+2y+2z+3
=(x^2+2x+1)+(y^2+2y+1)+(z^2+2z+1)
=(x+1)^2+(y+1)^2+(z+1)^2 >=0
x^2+y^2+z^2+2x+2y+2z+3 >=0 với mọi số thực x,y,z
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
mày hỏi vả bài kiểm tra à thằng điên
Bài 1. Chứng minh rằng với mọi x và y ta luôn có: \(\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}\ge x+2y\)
Bài 2. Cho x, y, z là các số thực tuỳ ý. Chứng minh rằng:
\(\sqrt{x^2+xy+y^2}\sqrt{y^2+yz+z^2}\sqrt{z^2+zx+x^2}\ge\sqrt{3}\left(x+y+z\right)\)
Bài 3. Cho x, y, z là các số thực dương thoả mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{2x^2+xy+2y^2}\sqrt{2y^2+yz+2z^2}\sqrt{2z^2+zx+2x^2}\)
Bài 3. Cho x, y, z là các số thực không âm thoả mãn x+y+z=3. Tìm giá trị nhỏ nhất của biểu thức: \(A=\sqrt{2x^2+3xy+2y^2}\sqrt{2y^2+3yz+2z^2}\sqrt{2z^2+3zx+2x^2}\)
Cho các số dương x,y,z và \(x^2+y^2+z^2=1\).Chứng minh rằng:\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}\ge\dfrac{1}{3}\)
\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2xz}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{xz+2yz}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Các bạn giúp mình làm bài này với ạ!
Cho x, y, z > 0
Chứng minh rằng:
\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge x+y+z.\)
\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)
Ba số x , y, z thỏa mãn 4x - 2z/2 =2y-3x/3 = 3z-4y/4. Chứng tỏ rằng x/2 = y/3 =z/4
1. Chứng minh với mọi số thực a, b, c ta có 2a2+b2+c2\(\ge\)2a(b+c)
2. Cho các số thực dương x, y, z thỏa mãn x+y+z=3. Chứng minh rằng: \(\frac{\text{2x^2}+y^2+z^2}{4-yz}+\frac{\text{2y^2}+z^2+x^2}{4-zx}+\frac{\text{2z^2}+x^2+y^2}{4-xy}\)\(\ge\)4xyz
Áp dụng bất đẳng thức AM - GM cho các bộ bốn số không âm, ta được: \(LHS=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-zx}+\frac{2z^2+x^2+y^2}{4-xy}\)\(=\frac{x^2+x^2+y^2+z^2}{4-yz}+\frac{y^2+y^2+z^2+x^2}{4-zx}+\frac{z^2+z^2+x^2+y^2}{4-xy}\)\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\)
Như vậy, ta cần chứng minh: \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{zx}}{zx\left(4-zx\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)
Theo bất đẳng thức Cauchy-Schwarz, ta có: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\)
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)
Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{zx}\right)\rightarrow\left(a;b;c\right)\). Khi đó \(\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)
và ta cần chứng minh \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge1\)
Xét BĐT phụ: \(\frac{x}{x^2\left(4-x^2\right)}\ge-\frac{1}{9}x+\frac{4}{9}\left(0< x\le1\right)\)(*)
Ta có: (*)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(x^2-2x-9\right)}{9x\left(x-2\right)\left(x+2\right)}\ge0\)(Đúng với mọi \(x\in(0;1]\))
Áp dụng, ta được: \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge-\frac{1}{9}\left(a+b+c\right)+\frac{4}{9}.3\)
\(\ge-\frac{1}{9}.3+\frac{4}{3}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
1. Chứng minh với mọi số thực a, b, c ta có 2a2+b2+c2\(\ge\)2a(b+c)
Chứng minh:
Ta có 2a2+b2+c2=(a2+b2)+(a2+c2)
Áp dụng bđt cauchy ta có
(a2+b2)+(a2+c2)\(\ge\)2ab+2ac=2a(b+c)
Đặt vế trái của bất đẳng thức là \(K\)
Với x, y, z > 0, ta có: \(yz\le\frac{\left(y+z\right)^2}{4}< \frac{\left(x+y+z\right)^2}{4}=\frac{9}{4}\Rightarrow4-yz>0\)
Tương tự ta cũng có \(4-zx>0,4-xy>0\)
Ta viết lại bất đẳng thức cần chứng minh thành \(\frac{x^2+y^2+x^2+z^2}{xyz\left(4-yz\right)}+\frac{x^2+y^2+y^2+z^2}{xyz\left(4-zx\right)}+\frac{z^2+y^2+x^2+z^2}{xyz\left(4-xy\right)}\ge4\)
Áp dụng bất đẳng thức Cauchy ta có \(K\ge\frac{2xy+2xz}{xyz\left(4-yz\right)}+\frac{2xy+2yz}{xyz\left(4-zx\right)}+\frac{2xz+2yz}{xyz\left(4-xy\right)}\)\(=2\left[\frac{y+z}{yz\left(4-yz\right)}+\frac{z+x}{zx\left(4-zx\right)}+\frac{x+y}{xy\left(4-xy\right)}\right]\)\(=2\left[\frac{1}{z\left(4-yz\right)}+\frac{1}{x\left(4-zx\right)}+\frac{1}{y\left(4-xy\right)}\right]+\) \(2\left[\frac{1}{y\left(4-yz\right)}+\frac{1}{z\left(4-zx\right)}+\frac{1}{x\left(4-xy\right)}\right]\)
Lại áp dụng bất đẳng thức Cauchy cho các bộ ba số dương, ta có\(\frac{1}{z\left(4-yz\right)}+\frac{1}{x\left(4-zx\right)}+\frac{1}{y\left(4-xy\right)}\ge\frac{3}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)
\(\frac{1}{y\left(4-yz\right)}+\frac{1}{z\left(4-zx\right)}+\frac{1}{x\left(4-xy\right)}\ge\frac{3}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)
Do đó \(K\ge\frac{12}{\sqrt[3]{xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}=\frac{12\sqrt[3]{3}}{\sqrt[3]{3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}}\)
Mặt khác ta lại có: \(3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)\le\left(\frac{3xyz+12-xy-yz-zx}{4}\right)^4\)
Ta có bất đẳng thức quen thuộc \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3\Leftrightarrow\frac{xy+yz+zx}{xyz}\ge3\)\(\Leftrightarrow3xyz-xy-yz-zx\le0\)
Suy ra \(3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)\le3^4=81\) \(\Rightarrow\sqrt[3]{3xyz\left(4-yz\right)\left(4-zx\right)\left(4-xy\right)}\le3\sqrt[3]{3}\)
Do đó \(K\ge\frac{12\sqrt[3]{3}}{3\sqrt[3]{3}}=4\)
Như vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1
CM rằng BT luôn dương với mọi giá trị
a) x^2-x+1>0 với mọi x
b)4x^2+y^2-z^2-4x-2z+2y+2014>0 với mọi x;y;z
a) Ta có:
\(x^2-x+1\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
Cho x, y, z > 0 và x + y + z = 1. Chứng minh rằng: \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\)
\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)
\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)
\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)
\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)