Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VUONG TAILIEU
Xem chi tiết

tuỳ ctv thôi

Dạng biểu thức bạn đưa ra là:

\(5^{2 n - 1} \cdot 2^{n} + 3^{n + 1} \cdot 2^{2 n - 1}\)

Và bạn cần xác định điều kiện để biểu thức này chia hết cho 38 với \(n \geq 2\).

Để giải quyết bài toán này, chúng ta có thể phân tích biểu thức và xem xét tính chất của phép chia với 38.

Bước 1: Phân tích chia hết cho 38

Ta biết rằng:

\(38 = 2 \cdot 19\)

Vì vậy, biểu thức cần phải chia hết cho cả 2 và 19.

Bước 2: Xét chia hết cho 2

Xét biểu thức mô tả phép chia cho 2:

\(5^{2 n - 1} \cdot 2^{n} + 3^{n + 1} \cdot 2^{2 n - 1}\)\(5^{2 n - 1} \cdot 2^{n}\) luôn chia hết cho \(2^{n}\), mà \(n \geq 2\), do đó phần này luôn chia hết cho 2 khi \(n \geq 2\).\(3^{n + 1} \cdot 2^{2 n - 1}\) cũng chia hết cho \(2^{2 n - 1}\), mà \(2 n - 1 \geq 3\) khi \(n \geq 2\), do đó phần này cũng chia hết cho 2.

Từ đó, ta có thể kết luận rằng biểu thức sẽ chia hết cho 2 với mọi \(n \geq 2\).

Bước 3: Xét chia hết cho 19

Bây giờ ta cần xem xét chia hết cho 19, tức là kiểm tra điều kiện:

\(5^{2 n - 1} \cdot 2^{n} + 3^{n + 1} \cdot 2^{2 n - 1} \equiv 0 \left(\right. m o d 19 \left.\right)\)

Ta sẽ xét các giá trị của \(n\) từ \(n = 2\) trở đi và kiểm tra xem biểu thức có chia hết cho 19 không.

Bước 4: Kiểm tra các giá trị \(n\)

Bây giờ, tôi sẽ thử tính một số giá trị của biểu thức cho \(n = 2 , 3 , 4\) để xem nó có chia hết cho 19 không.

Chờ một chút nhé, tôi sẽ tính toán thử.

It looks like to run Python code, you'd need to be logged in to ChatGPT. However, here's the code you can run on your own to check the divisibility for different values of \(n\):

def check_expression(n): # Calculate the expression for given n expr = (5**(2*n - 1) * 2**n + 3**(n + 1) * 2**(2*n - 1)) % 38 return expr == 0 # Check for different values of n >= 2 results = {n: check_expression(n) for n in range(2, 10)} print(results)

You can run it in any Python environment (like Jupyter, or an online compiler) to check for which values of \(n\), the expression is divisible by 38. Let me know if you need more help with this! 

Tham khảo

Nguyễn Nhật Quang
Xem chi tiết
le bao truc
14 tháng 5 2017 lúc 14:48

Ta có
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+...+\frac{1}{2}\left(\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2n+3}\right)\)
\(=\frac{1}{2}\cdot\frac{2n+2}{2n+3}\)
\(=\frac{2n+2}{4n+6}=\frac{2\left(n+1\right)}{2\left(2n+3\right)}=\frac{n+1}{2n+3}\)
\(\RightarrowĐPCM\)

Phạm Khánh Ly
Xem chi tiết
Mai Tiến Đỗ
15 tháng 10 2019 lúc 22:19

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

Mai Tiến Đỗ
15 tháng 10 2019 lúc 22:16

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

Mai Tiến Đỗ
15 tháng 10 2019 lúc 22:18

b) \(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

Vì \(n\in Z\Rightarrow\left\{{}\begin{matrix}x+1\in Z\\n+2\in Z\end{matrix}\right.\)

Mà n,n+1,n+2 là 3 sô nguyên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+3\right)⋮6\left(dpcm\right)\)

Lê Thị Hạ Vy
Xem chi tiết
le khanh
Xem chi tiết

Bài 1:

 ta có 3^3 = 27 chia 13 dư 1

=> (3^3)^670 = 3^ 2010 chia 13 dư 1 (1) 
5^2 = 25 chia 13 dư (-1)

=> (5^2)^1005 chia 13 dư (-1)^ 1005 = (-1) (2) 
Từ (1); (2)

=> 3^2010+5^2010 chia 13 dư 1 + (-1) = 0 
hay 3^2010+5^2010 chia hết cho 13. 

bài 1:

32010=(33)670≡1670(mod13)" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">
52010=(52)1005≡(−1)1005(mod13)" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-table; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">
32010+52010" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml"> chia hết cho 13

32010+52010=(33)670+(52)1005=27670+251005=(26+1)670+(26−1)1005=26A+1670−11005=26A⋮13" role="presentation" style="border:0px; direction:ltr; display:table-cell !important; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:44.919em; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:center; white-space:nowrap; width:10000em; word-spacing:normal" class="MathJax_CHTML mjx-chtml mjx-full-width">

Nguyễn Hải Triều
Xem chi tiết
bach nhac lam
23 tháng 6 2021 lúc 22:53

Thử n=1 là thấy sai đề nha

\(P\left(n\right)=2^2+4^2+...+\left(2n\right)^2=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}\)     (1)

\(n=1\) ta có: \(P\left(n\right)=2^2=\dfrac{2\cdot2\cdot3}{3}=4\)    => (1) đúng với n=1

Giả sử (1) đúng với n tức là \(2^2+4^2+...+\left(2n\right)^2=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}\)

Ta sẽ c/m (1) đúng với n+1

Có \(2^2+4^2+...+\left(2n\right)^2+\left(2n+2\right)^2\)

\(=\dfrac{2n\left(n+1\right)\left(2n+1\right)}{3}+4\left(n+1\right)^2\)

\(=\left(n+1\right)\dfrac{2n\left(2n+1\right)+12\left(n+1\right)}{3}=\dfrac{\left[2n+2\right]\left(n+2\right)\left(2n+3\right)}{3}\)

=> (1) đúng với n+1

Theo nguyên lý quy nạp ta có đpcm

 

sunshine
Xem chi tiết
svtkvtm
10 tháng 3 2019 lúc 14:47

\(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{2n-1}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{2n}\right)=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2n-1}+\frac{1}{2n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2n}\right)=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n-1}+\frac{1}{2n}-\frac{1}{1}-\frac{1}{2}-....-\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}\left(\text{đpcm}\right)\)

Đàm Vũ Đức Anh
Xem chi tiết
Akai Haruma
7 tháng 9 2018 lúc 18:27

Bài toán sai với $n=0$

Jin yi Ran
Xem chi tiết
Victory_Chiến thắng
17 tháng 6 2016 lúc 18:37

\(A=\left(n-1\right)\left(n+4\right)-\left(n+1\right)\)

\(A=n^2+3n-4-n-1\)

\(A=n^2+2n-5\)

Giả sử n = 1 thì A không chia hết cho 6 nên đề bài vô lí

Nguyễn Quỳnh Chi
17 tháng 6 2016 lúc 18:40

Với n=2 thì (n-1)(n+4)-(n+1) không chia hết cho 6