Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quốc Anh
Xem chi tiết
CandyK
Xem chi tiết
ILoveMath
22 tháng 10 2021 lúc 11:01

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+2\sqrt{12}}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-2\sqrt{75}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)

\(C=\sqrt{4+5}\)

\(C=3\)

Triết Phan
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 16:26

\(a,=\dfrac{3-\sqrt{2}+3+\sqrt{2}}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}=\dfrac{6}{-1}=-6\\ b,=\dfrac{6\sqrt{2}+8-6\sqrt{2}+8}{\left(3\sqrt{2}-4\right)\left(3\sqrt{2}+4\right)}=\dfrac{16}{2}=8\\ c,=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\\ =\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}=\dfrac{16}{2}=8\)

\(d,=\dfrac{6\sqrt{2}+9\sqrt{3}-6\sqrt{2}+9\sqrt{3}}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}=\dfrac{18\sqrt{3}}{-19}=\dfrac{-18\sqrt{3}}{19}\\ e,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\\ =\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

Tô Thị Thùy Dương
Xem chi tiết
alibaba nguyễn
21 tháng 4 2017 lúc 8:26

Ta có: 

\(A=\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}\)

\(\Leftrightarrow A^2=10-2\sqrt{25-17}=10-4\sqrt{2}\)

\(\Leftrightarrow A=\sqrt{10-4\sqrt{2}}\)

Ta lại có:

\(B=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)

\(\Leftrightarrow B^2=6-2\sqrt{9-5}=2\)

\(\Leftrightarrow B=\sqrt{2}\)

Thế vô biểu thức ban đầu ta được

\(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)

\(=\frac{\sqrt{10-4\sqrt{2}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{2}+2-\sqrt{2}}=\frac{4}{2}=2\)

Cô chủ nhỏ
21 tháng 4 2017 lúc 9:29

\(\sqrt{2}\)

ke ___ bac ___ tinh
21 tháng 4 2017 lúc 11:33

ta có :

\(A=\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}\)

\(\Leftrightarrow A^2=10-2\sqrt{25-17=10-4\sqrt{2}}\)

\(\Leftrightarrow A=\sqrt{10-4\sqrt{2}}\)

ta lại có :

\(B=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)

\(\Leftrightarrow B^2=6-2\sqrt{9-5}=2\)

\(\Leftrightarrow B=\sqrt{2}\)

the vo bieu thuc ban dau ta duoc

\(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2=\sqrt{2}}\)

\(=\frac{\sqrt{10-4\sqrt{2}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{2}+2-\sqrt{2}}=\frac{4}{2}=2\)

Nguyễn Minh Anh
Xem chi tiết
Tiểu Ma Bạc Hà
14 tháng 7 2019 lúc 22:34

\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)

\(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)

==================================================

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)\(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)

===========================================================

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)

\(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)

================================================================

Frienke De Jong
Xem chi tiết
Lê Thị Thục Hiền
6 tháng 7 2021 lúc 11:10

1.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3=2\sqrt{2}+6+3\sqrt{2}+1-\left(2\sqrt{2}-6+3\sqrt{2}-1\right)=14\)

2.\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(=\sqrt{\dfrac{1}{2}\left(8-2\sqrt{3.}\sqrt{5}\right)}+\sqrt{\dfrac{1}{2}\left(8+2.\sqrt{3}.\sqrt{5}\right)}-\sqrt{2}\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\dfrac{1}{2}\left(\sqrt{3}-\sqrt{5}\right)^2}+\sqrt{\dfrac{1}{2}\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{2}\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\dfrac{\sqrt{2}}{2}\left|\sqrt{3}-\sqrt{5}\right|+\dfrac{\sqrt{2}}{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{2}\left|\sqrt{5}-1\right|\)

\(=\dfrac{\sqrt{2}}{2}\left(\sqrt{5}-\sqrt{3}\right)+\dfrac{\sqrt{2}}{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{2}\left(\sqrt{5}-1\right)\)

\(=\sqrt{5}.\sqrt{2}-\sqrt{2}\left(\sqrt{5}-1\right)=\sqrt{2}\)

3.\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{1-\left(\sqrt{5}\right)^2}\)

\(=\sqrt{20}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}=2\sqrt{5}-2\left(1+\sqrt{5}\right)=-2\)

4.\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)

\(=\sqrt{\dfrac{4-2\sqrt{3}}{4+2\sqrt{3}}}+\sqrt{\dfrac{4+2\sqrt{3}}{4-2\sqrt{3}}}\)\(=\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}+\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}\)

\(=\dfrac{\left|\sqrt{3}-1\right|}{\sqrt{3}+1}+\dfrac{\sqrt{3}+1}{\left|\sqrt{3}-1\right|}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}+\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)

\(=\dfrac{\left(\sqrt{3}-1\right)^2+\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\dfrac{8}{3-1}=4\)

Nguyễn Lê Phước Thịnh
6 tháng 7 2021 lúc 11:12

3: Ta có: \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)

\(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)

\(=2\sqrt{5}-2\left(\sqrt{5}+1\right)\)

=-2

4) Ta có: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}\)

=4

Anh Quynh
Xem chi tiết
Nguyễn Hoàng Anh Thư
Xem chi tiết
Nguoi Ngu
Xem chi tiết
Nguyễn Trọng Kiên
Xem chi tiết