tính \(\sqrt[3]{4+\sqrt{5}}-\sqrt[3]{4-\sqrt{5}}\)
Tính:
a/ \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
b/ \(\frac{\sqrt{20+8\sqrt{3}}+\sqrt{20-8\sqrt{3}}}{\sqrt{5+2\sqrt{3}}-\sqrt{5-2\sqrt{3}}}-\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\$\sqrt{4+\sqrt{3}}-\sqrt{4-\sqrt{3}}}\)
Tính \(\frac{2\sqrt{3}-4}{\sqrt{3}-1}+\frac{2\sqrt{2}-1}{\sqrt{2}-1}-\frac{1+\sqrt{6}}{\sqrt{2}+3}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+2\sqrt{12}}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-2\sqrt{75}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)
\(C=\sqrt{4+5}\)
\(C=3\)
Thực hiến phép tính :
a, \(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
b, \(\dfrac{2}{3\sqrt{2}-4}-\dfrac{2}{3\sqrt{2}+4}\)
c, \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
d, \(\dfrac{3}{2\sqrt{2}-3\sqrt{3}}-\dfrac{3}{2\sqrt{2}+3\sqrt{3}}\)
e, \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
g, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(a,=\dfrac{3-\sqrt{2}+3+\sqrt{2}}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}=\dfrac{6}{-1}=-6\\ b,=\dfrac{6\sqrt{2}+8-6\sqrt{2}+8}{\left(3\sqrt{2}-4\right)\left(3\sqrt{2}+4\right)}=\dfrac{16}{2}=8\\ c,=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\\ =\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}=\dfrac{16}{2}=8\)
\(d,=\dfrac{6\sqrt{2}+9\sqrt{3}-6\sqrt{2}+9\sqrt{3}}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}=\dfrac{18\sqrt{3}}{-19}=\dfrac{-18\sqrt{3}}{19}\\ e,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\\ =\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)
Tính: \(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)
Ta có:
\(A=\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}\)
\(\Leftrightarrow A^2=10-2\sqrt{25-17}=10-4\sqrt{2}\)
\(\Leftrightarrow A=\sqrt{10-4\sqrt{2}}\)
Ta lại có:
\(B=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
\(\Leftrightarrow B^2=6-2\sqrt{9-5}=2\)
\(\Leftrightarrow B=\sqrt{2}\)
Thế vô biểu thức ban đầu ta được
\(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)
\(=\frac{\sqrt{10-4\sqrt{2}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{2}+2-\sqrt{2}}=\frac{4}{2}=2\)
ta có :
\(A=\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}\)
\(\Leftrightarrow A^2=10-2\sqrt{25-17=10-4\sqrt{2}}\)
\(\Leftrightarrow A=\sqrt{10-4\sqrt{2}}\)
ta lại có :
\(B=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
\(\Leftrightarrow B^2=6-2\sqrt{9-5}=2\)
\(\Leftrightarrow B=\sqrt{2}\)
the vo bieu thuc ban dau ta duoc
\(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2=\sqrt{2}}\)
\(=\frac{\sqrt{10-4\sqrt{2}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{2}+2-\sqrt{2}}=\frac{4}{2}=2\)
Thực hiện các phép tính sau:
\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)
\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)
= \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
==================================================
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)= \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
===========================================================
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
= \(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
================================================================
Thực hiện từng bước của phép tính:
1.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
2.\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
3.\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
4.\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
1.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3=2\sqrt{2}+6+3\sqrt{2}+1-\left(2\sqrt{2}-6+3\sqrt{2}-1\right)=14\)
2.\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(=\sqrt{\dfrac{1}{2}\left(8-2\sqrt{3.}\sqrt{5}\right)}+\sqrt{\dfrac{1}{2}\left(8+2.\sqrt{3}.\sqrt{5}\right)}-\sqrt{2}\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\dfrac{1}{2}\left(\sqrt{3}-\sqrt{5}\right)^2}+\sqrt{\dfrac{1}{2}\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{2}\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\dfrac{\sqrt{2}}{2}\left|\sqrt{3}-\sqrt{5}\right|+\dfrac{\sqrt{2}}{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{2}\left|\sqrt{5}-1\right|\)
\(=\dfrac{\sqrt{2}}{2}\left(\sqrt{5}-\sqrt{3}\right)+\dfrac{\sqrt{2}}{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{2}\left(\sqrt{5}-1\right)\)
\(=\sqrt{5}.\sqrt{2}-\sqrt{2}\left(\sqrt{5}-1\right)=\sqrt{2}\)
3.\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{1-\left(\sqrt{5}\right)^2}\)
\(=\sqrt{20}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}=2\sqrt{5}-2\left(1+\sqrt{5}\right)=-2\)
4.\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(=\sqrt{\dfrac{4-2\sqrt{3}}{4+2\sqrt{3}}}+\sqrt{\dfrac{4+2\sqrt{3}}{4-2\sqrt{3}}}\)\(=\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}+\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}\)
\(=\dfrac{\left|\sqrt{3}-1\right|}{\sqrt{3}+1}+\dfrac{\sqrt{3}+1}{\left|\sqrt{3}-1\right|}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}+\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\dfrac{\left(\sqrt{3}-1\right)^2+\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\dfrac{8}{3-1}=4\)
3: Ta có: \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
\(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
\(=2\sqrt{5}-2\left(\sqrt{5}+1\right)\)
=-2
4) Ta có: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}\)
=4
Tính:
\(A=\sqrt{27}-2\sqrt{48}+3\sqrt{75}\)
\(B=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(C=\sqrt{\left(2\sqrt{3}+1\right)^2}+\sqrt{\left(2\sqrt{3}-5\right)^2}\)
\(D=\sqrt{9-4\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
\(E=\dfrac{4}{\sqrt{5}-2}-\dfrac{32}{\sqrt{5}+1}\)
\(M=\dfrac{10}{3\sqrt{2}-4}+\dfrac{28}{3\sqrt{2}+2}\)
please help ;-;
\(Tính\)
\(a.\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\sqrt{27-9\sqrt{5}}\)
\(b.\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\frac{4+\sqrt{3}}{5-2\sqrt{3}}}\)
\(c.\frac{3-4\sqrt{3}}{\sqrt{6}-\sqrt{2}-\sqrt{5}}\)
\(d.\left(\sqrt{11}-\sqrt{3}\right)\left(\sqrt{13-\sqrt{6}+2\sqrt{30-\sqrt{45}}}+\sqrt{11}-\sqrt{10-\sqrt{6}}\right)\)
\(e.\frac{\sqrt{4+\sqrt{5}}+\sqrt{4-\sqrt{5}}}{\sqrt{4}+\sqrt{11}}-\frac{\sqrt{20-4\sqrt{23}}}{\sqrt{5+\sqrt{2}}-\sqrt{5-\sqrt{2}}}\)
Thực hiện phép tính
1)\(\frac{\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}+\sqrt{2}}{\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}+\sqrt{5}}\)
2)\(\left(4+\sqrt{15}\right)\left(10-\sqrt{6}\right)-\sqrt{4-\sqrt{15}}\)
3)\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
4)\(\frac{2\sqrt{3-\sqrt{5+\sqrt{13-\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
5)\(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}\)
Thực hiện phép tính :
A = \(\frac{\sqrt{5+\sqrt{17}}-\sqrt{5-\sqrt{17}}-\sqrt{10-4\sqrt{2}}+4}{\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}+2-\sqrt{2}}\)