Phân tích thành nhân tử
a, 4x^8+1
b, 6x^2+7xy+2y^2
phân tích đa thức thành nhân tử a. 27x^3-8 b. 8x^3+12x^2+6x+1 c.(2y-1)^2-4x^2+4x-1
a) \(27x^3-8=\left(3x-2\right)\left(9x^2+6x+4\right)\)
b) \(8x^3+12x^2+6x+1=\left(2x+1\right)^3\)
c) \(\left(2y-1\right)^1-4x^2+4x-1=\left(2y-1\right)^2-\left(2x-1\right)^2=\left(2y-1-2x+1\right)\left(2y-1+2x-1\right)\)
\(=\left(2y-2x\right)\left(2y+2x-2\right)=4\left(y-x\right)\left(y+x-1\right)\)
giúp mình với:
phân tích đa thức thành nhân tử
a)x^2+4x-y^2+4
b)x^3-x^2-x+1
c)x^4+6x^2y+9y^2-1
d)2x^2+3x-5
e)x^2-7xy+10y^2
\(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x^2+2\right)^2-y^4\)
\(=\left(x^2+y^2+2\right)\left(x^2-y^2+2\right)\)
\(\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
.
hk tôt
Phân tích đa thức thành nhân tử a) x^2 (x -2) - 4x +8 b) x^2 + 7xy + 10y^2
\(a,x^2\left(x-2\right)-4x+8\\ =\left(x^2-4\right)\left(x-2\right)\\ =\left(x-2\right)^2\left(x+2\right)\\ b,x^2+7xy+10y^2\\ =x^2+2xy+5xy+10y^2\\ =x\left(x+2y\right)+5y\left(x+2y\right)\\ =\left(x+5y\right)\left(x+2y\right)\)
Phân tích đa thức thành nhân tử: 6x2 + 7xy + 2y2
6x2+7xy+2y2
=6x2+3xy+4xy+2y2
=3x.(2x+y)+2y.(2x+y)
=(2x+y)(3x+2y)
phân tích đa thức thành nhân tử
a, 6x^2 + 7xy + 2y^2
b, 9x^2 - 9xy - 4y^2
c, x^2 - y^2 + 10x - 6y + 16
phân tích đa thức thành nhân tử
a, 6x^2 + 7xy + 2y^2
=6x^2+3xy+4xy+2y^2
=3x(x+y)+2y(x+y)
=(3x+2y)(x+y)
b, 9x^2 - 9xy - 4y^2
=9x^2 +3xy-12xy-4y^2
=3x(x+y)-4y(x+y)
=(3x+4y)(x+y)
c, x^2 - y^2 + 10x - 6y + 16=x^2-y^2+6x-6y+4x+16=x(x+6)-y(x+6)+4(x+6)=(x-y+4)(x+6)
Bài làm
a, 6x2 + 7xy + 2y2
= 6x2 + 3xy + 4xy + 2y2
= ( 6x2 + 3xy ) + ( 4xy + 2y2 )
= 3x( 2x + y ) + 2y( 2x + y )
= ( 2x + y )( 3x + 2y )
b, 9x2 - 9xy - 4y2
= 9x2 - 12xy + 3xy - 4y2
= ( 9x2 - 12xy ) + ( 3xy - 4y2 )
= 3x( 3x - 4y ) + y ( 3x - 4y )
= ( 3x + y )( 3x - 4y )
c, x2 - y2 + 10x - 6y + 16
= x2 - y2 - 6x + 6y + 4x + 16
= x( x + 6 ) - y( x + 6 ) + 4( x + 6 )
= ( x - y + 4 )( x + 6 )
# Học tốt #
1) Phân tích đa thức thành nhân tử:
a) x3 - 4x2 - 12x + 27
b) 9x2 + 6x - 8
c) x2 - 7xy + 10y2
d) x8 + x7 + 1
a) x3 - 4x2 - 12x + 27
= \(\left(x^3+3x^2\right)-\left(7x^2+21x\right)+\left(9x+27\right)\)
= \(\left(x+3\right)\left(x^2-7x+9\right)\)
b) 9x2 + 6x - 8
=\(9x^2-6x+12x-8=3x\left(3x-2\right)+4\left(3x-2\right)\)
=\(\left(3x-2\right)\left(3x+4\right)\)
c) x2 - 7xy + 10y2
=\(x^2-5xy-2xy+10y^2=x\left(x-5y\right)-2y\left(x-5y\right)\)
=\(\left(x-5y\right)\left(x-2y\right)\)
a) x3 - 4x2 - 12x + 27
=x3 + 3x2 - 7x2 - 21x + 9x + 27
= x2(x+3) - 7x(x+3) + 9(x+3)
= (x2 - 7x + 9)(x + 3)
b) 9x2 + 6x - 8
= 9x2 - 6x + 12x - 8
= 3x(3x - 2) + 4(3x - 2)
= (3x + 4)(3x - 2)
c) x2 - 7xy + 10y2
= x2 - 5xy - 2xy + 10y2
= x(x - 5y) - 2y(x - 5y)
= (x - 2y)(x - 5y)
d) x8 + x7 + 1
Ta thêm vào các số hạng x6, x5, x4, x3, x2, x và cùng bớt đi các số hạng ấy ta có:
= x8 - x6 + x5 - x3 + x2 + x7 - x5 + x4 -x2 +x + x6 - x4 + x3 - x + 1
= x2(x6 - x4 + x3 - x + 1) + x(x6 - x4 + x3 - x + 1) + x6 - x4 + x3 - x + 1
= (x2 + x + 1)(x6 - x4 + x3 - x + 1)
a) \(x^3-4x^2-12x+27\)
\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-4x\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
b) \(9x^2+6x-8\)
\(=9x^2+6x+1-9\)
\(=\left(3x+1\right)^2-9\)
\(=\left(3x+1-9\right)\left(3x+1+9\right)\)
\(=\left(3x+8\right)\left(3x+10\right)\)
c) \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
\(=x\left(x-2y\right)-5y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-5\right)\)
Phân tích đa thức thành nhân tử :
a) x2 - 6x + 8
b) x2 -7xy +10y2
a) \(x^2+6x+8\)
\(=\left(x^2-2x\right)-4x+8\)
\(=x\left(x-2\right)-4\left(x-2\right)\)
\(\left(x-2\right)\left(x-4\right)\)
b) \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
\(=x\left(x-2y\right)-5y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-5y\right)\)
a) x2 - 6x + 8
= x2 -2x - 4x +8
= x( x-2) -4( x-2)
= ( x-2)(x-4)
a/ \(x^2-6x+8=x^2-2x-4x+8\) \(8\) \(=x\left(x-2\right)-4\left(x-2\right)\) \(=\left(x-4\right)\left(x-2\right)\)
b/ \(x^2-7xy+10y^2\) \(=x^2-2xy-5xy+10y^2\) \(=x\left(x-2y\right)-5y\left(x-2y\right)\) \(=\left(x-5y\right)\left(x-2y\right)\)
Phân tích đa thức sau thành nhân tử a.(x^2+1)^2-x^2 b.(x^2-6xy)+9y^2 c.5x^3-10x^2y+5xy^2 d.x^2-6x+9 e.4x(2y-z)-7y(z-2y)
a: =(x^2-x+1)(x^2+x+1)
b: =x^2-6xy+9y^2=(x-3y)^2
c: =5x(x^2-2xy+y^2)
=5x(x-y)^2
d: =(x-3)^2
e: =(2y-z)(4x+7y)
a)HĐT:(x^2+1-x)(x^2+1+x)
b)=x^2-2.x.3y+(3y)^2
c)=5x(x^2-2xy+y^2)
=5x(x-y)^2
d)x^2-2.3.x+3^2
=(x-3)^2
e)(2y-z)+7y(2y-z)
=(2y-z)(1+7y)
Phân tích đa thức sau thành nhân tử a) -16a^4b^6 - 24a^5b^5 - 9a^6b^4
b) x^3 - 6x^2y + 12xy^2 - 8x^3
c) x^3 + 3/2x^2 + 3/4x + 1/8
Lời giải:
a.
\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)
\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)
\(=-a^4b^4(3a+4b)^2\)
b.
$x^3-6x^2y+12xy^2-8x^3$
$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$
c.
$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$
$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$
$=(x+\frac{1}{2})^3$
a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\cdot\left(4b+3a\right)^2\)
b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(x-2y\right)^3\)
c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=\left(x+\dfrac{1}{2}\right)^3\)
Phân tích đa thức thành nhân tử:
a) x^3-6x^2-x+30
b) x^4_6x^3+27x^2-54x+32
c) 2x^2+xy-y^2
d) (x-2y)^2-x+2y-30
e) (x^2+4x+8)^2-3x(x^2+4x+8)+2x^2