Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thai Nguyen xuan
Xem chi tiết
Ngọc Nhã Uyên Hạ
Xem chi tiết
Quỳnh Anh
Xem chi tiết

     2\(\sqrt{\dfrac{16}{3}}\)  - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\)  - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)

\(\dfrac{11}{2\sqrt{3}}\)

\(\dfrac{11\sqrt{3}}{6}\)

f, 2\(\sqrt{\dfrac{1}{2}}\)\(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5}{2\sqrt{2}}\)

\(\dfrac{5\sqrt{2}}{4}\)

 

 

(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{3-1}\)

\(\dfrac{-4}{2}\)

= -2

   \(\dfrac{2}{\sqrt{6}-2}+\dfrac{2}{\sqrt{6}+2}+\dfrac{5}{\sqrt{6}}\)

\(\dfrac{2.\left(\sqrt{6}+2\right)+2\left(\sqrt{6}-4\right)}{\left(\sqrt{6}-2\right)}\) + \(\dfrac{5}{\sqrt{6}}\)

\(\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{6-4}\) + \(\dfrac{5\sqrt{6}}{6}\)

\(\dfrac{4\sqrt{6}}{2}\) + \(\dfrac{5\sqrt{6}}{6}\)

\(\dfrac{12\sqrt{6}+5\sqrt{6}}{6}\)

\(\dfrac{17\sqrt{6}}{6}\)

Bi Bi
Xem chi tiết
layla Nguyễn
Xem chi tiết
Hồng Phúc
10 tháng 9 2021 lúc 19:46

4.

\(sinx+2cos\left(x+\dfrac{\pi}{3}\right)+4sin\left(x+\dfrac{\pi}{6}\right)+cosx=4\)

\(\Leftrightarrow sinx+cosx-\sqrt{3}sinx+2\sqrt{3}sinx+2cosx+cosx=4\)

\(\Leftrightarrow\left(1+\sqrt{3}\right)sinx+4cosx=4\)

\(\Leftrightarrow\sqrt{20+2\sqrt{3}}\left(\dfrac{1+\sqrt{3}}{\sqrt{20+2\sqrt{3}}}sinx+\dfrac{4}{\sqrt{20+2\sqrt{3}}}cosx\right)=4\)

\(\Leftrightarrow cos\left(x-arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}\right)=\dfrac{4}{\sqrt{20+2\sqrt{3}}}\)

\(\Leftrightarrow x-arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}=\pm arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2arccos\dfrac{4}{\sqrt{20+2\sqrt{3}}}+k2\pi\\x=k2\pi\end{matrix}\right.\)

Hồng Phúc
10 tháng 9 2021 lúc 19:46

3.

\(4sinx+cosx+2cos\left(x+\dfrac{\pi}{3}\right)=2\)

\(\Leftrightarrow4sinx+cosx+cosx-\sqrt{3}sinx=2\)

\(\Leftrightarrow\left(4-\sqrt{3}\right)sinx+2cosx=2\)

\(\Leftrightarrow\sqrt{23-4\sqrt{3}}\left(\dfrac{4-\sqrt{3}}{\sqrt{23-4\sqrt{3}}}sinx+\dfrac{2}{\sqrt{23-4\sqrt{3}}}cosx\right)=2\)

\(\Leftrightarrow cos\left(x-arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}\right)=\dfrac{2}{\sqrt{23-4\sqrt{3}}}\)

\(\Leftrightarrow x-arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}=\pm arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}+k2\pi\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2arccos\dfrac{2}{\sqrt{23-4\sqrt{3}}}+k2\pi\\x=k2\pi\end{matrix}\right.\)

pro.what
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 11 2021 lúc 9:05

Gọi số vở 7A,7B,7C ll là a,b,c(quyển;a,b,c∈N*)

Áp dụng tc dstbn:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+c}{2+4}=\dfrac{120}{8}=15\\ \Rightarrow\left\{{}\begin{matrix}a=30\\b=45\\c=60\end{matrix}\right.\)

Vậy ...

Ngann555
Xem chi tiết
Bi Bi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 12:40

a: Xét tứ giác AECF có

AE//CF(AB//CD)

AE=CF

Do đó: AECF là hình bình hành

b: AE+EB=AB

CF+FD=CD

mà AE=CF và AB=CD

nên BE=DF

Xét tứ giác BEDF có

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

=>DE=BF

c:

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔAIC có

D,O lần lượt là trung điểm của AI,AC

=>DO là đường trung bình

=>DO//CI

d: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của EF

=>AC,EF,BD đồng quy(do cùng đi qua O)

Nguyễn Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 14:40

a: Xét ΔSBM và ΔSNB có 

\(\widehat{SBM}=\widehat{SNB}\)

\(\widehat{BSM}\) chung

Do đó: ΔSBM\(\sim\)ΔSNB

Suy ra: SB/SN=SM/SB

hay \(SB^2=SM\cdot SN\)

b: Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên SO là đường trung trực của AB

=>SO⊥AB

Xét ΔOBS vuông tại B có BH là đường cao

nên \(SH\cdot SO=SB^2=SM\cdot SN\)