Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Nhã Uyên Hạ

Giải theo cách này mà giải chi tiết hơn được ko ạ. Đang cần gấp!!! Cảm ơn ạ!!!

Akai Haruma
28 tháng 8 2021 lúc 23:39

Thực sự mình cũng không hiểu cách giải theo hướng dẫn bạn trích ở trên. Nhưng bạn có thể như sau:

\(\frac{a}{b^2}+\frac{4b}{a^2+b^2}=\frac{2a}{1-a^2}+\frac{4b}{1-b^2}=\frac{2a^2}{a(1-a^2)}+\frac{4b^2}{b(1-b^2)}\)

Áp dụng BĐT AM-GM:
\(2a^2(1-a^2)^2=2a^2(1-a^2)(1-a^2)\leq \left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{8}{27}\)

$\Rightarrow a(1-a^2)\leq \frac{2}{3\sqrt{3}}$

$\Rightarrow \frac{2a^2}{a(1-a^2)}\geq 3\sqrt{3}a^2$

Tương tự: $\frac{4b^2}{b(1-b^2)}\geq 6\sqrt{3}b^2$

Do đó: $\frac{a}{b^2}+\frac{4b}{a^2+b^2}\geq 3\sqrt{3}(a^2+2b^2)=3\sqrt{3}$ (đpcm)

 

Akai Haruma
28 tháng 8 2021 lúc 23:40

Bài toán này xuất phát từ bài toán quen thuộc:

Cho $a,b,c>0$ thỏa mãn $a^2+b^2+c^2=1$. CMR:

$\frac{a}{b^2+c^2}+\frac{b}{a^2+c^2}+\frac{c}{a^2+b^2}\geq \frac{3\sqrt{3}}{2}$


Các câu hỏi tương tự
Ngọc Nhã Uyên Hạ
Xem chi tiết
Ngu Hoàng Phương
Xem chi tiết
Ngọc Nhã Uyên Hạ
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Sơn Nguyễn
Xem chi tiết
Quang Hoàng
Xem chi tiết
Kiệt Lê
Xem chi tiết
Trần Việt An
Xem chi tiết
Truong Vu
Xem chi tiết