Thực sự mình cũng không hiểu cách giải theo hướng dẫn bạn trích ở trên. Nhưng bạn có thể như sau:
\(\frac{a}{b^2}+\frac{4b}{a^2+b^2}=\frac{2a}{1-a^2}+\frac{4b}{1-b^2}=\frac{2a^2}{a(1-a^2)}+\frac{4b^2}{b(1-b^2)}\)
Áp dụng BĐT AM-GM:
\(2a^2(1-a^2)^2=2a^2(1-a^2)(1-a^2)\leq \left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{8}{27}\)
$\Rightarrow a(1-a^2)\leq \frac{2}{3\sqrt{3}}$
$\Rightarrow \frac{2a^2}{a(1-a^2)}\geq 3\sqrt{3}a^2$
Tương tự: $\frac{4b^2}{b(1-b^2)}\geq 6\sqrt{3}b^2$
Do đó: $\frac{a}{b^2}+\frac{4b}{a^2+b^2}\geq 3\sqrt{3}(a^2+2b^2)=3\sqrt{3}$ (đpcm)
Bài toán này xuất phát từ bài toán quen thuộc:
Cho $a,b,c>0$ thỏa mãn $a^2+b^2+c^2=1$. CMR:
$\frac{a}{b^2+c^2}+\frac{b}{a^2+c^2}+\frac{c}{a^2+b^2}\geq \frac{3\sqrt{3}}{2}$