tính giá trị nhỏ nhất của biểu thức sau:
A=\(\left|x-500\right|\)+\(\left|x-300\right|\)
Tìm giá trị nhỏ nhất cảu: A = \(\left|x-500\right|+\left|x-300\right|\)
\(A=\left|500-x\right|+\left|x-300\right|\ge\left|500-x+x-300\right|=200.\)
A min = 200 khi \(300\le x\le500.\)
Tìm giá trị nhỏ nhất của biểu thức sau:
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-2020\right|\)
Tìm giá trị nhỏ nhất của các biểu thức sau
a) A= |x+11| + |x+21| + |x+500| + |x+1012| + |x+1032|
b) \(B=\left|\sqrt{x}-7\right|+\left|\sqrt{x}-5\right|\)
Tính giá trị nhỏ nhất của biểu thức :
A=\(\left|x-2008\right|+\left|x-2009\right|+\left|y-2010\right|+\left|x-2011\right|+2011\)
A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011
≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011
= |y-2010|+|x-2011|+2012≥2012
Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0
<=> {y=2010x=2011{y=2010x=2011
Vay GTNN cua A=2012 khi {x=2011;y=2010
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\)
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$
$|x-2020|\geq 0$ với mọi $x$
$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$
Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$
Tức là $x=2020$
Tính giá trị nhỏ nhất của biểu thức : A = \(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
A = [(x +1).(x - 6)].[(x - 2).(x - 3)] = (x2 - 5x - 6). (x2 - 5x + 6)
Đặt t = x2 - 5x => A = (t - 6).(t + 6) = t2 - 36 \(\ge\) 0 - 36 = -36 với mọi t
Dấu "=" xảy ra khi t = 0 <=> x2 - 5x = 0 <=> x = 0 hoặc x = 5
Vậy GTNN của A bằng -36 tại x = 0 hoặc x = 5
Tìm giá trị nhỏ nhất của biểu thức sau : \(P=\left(x^2-3\right)\left(x^2+2\right)\)
Đặt \(x^2-3=t\)
\(\Rightarrow P=t\left(t+5\right)=t^2+5t\)
\(=t^2+2.t.\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{25}{4}\)
\(=\left(t+\dfrac{5}{2}\right)^2-\dfrac{25}{4}\ge-\dfrac{25}{4}\)
\(\Rightarrow...\)
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)