Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khương Vũ Phương Anh
Xem chi tiết
Đinh Đức Hùng
25 tháng 2 2018 lúc 12:51

\(PT\Leftrightarrow x^4+y^3-xy^3-1=0\)

\(\Leftrightarrow\left(x^4-1\right)+\left(y^3-xy^3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1\right)-y^3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1-y^3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x^3+x^2+x+1=y^3\end{cases}}\)

TH1 : \(x=1\Rightarrow y\in Z\)

TH2 : \(x^3+x^2+x+1=y^3\)

Ta có : \(x^3< x^3+x^2+x+1< x^3+3x^2+3x+1\)

\(\Leftrightarrow x^3< x^3+x^2+x+1< \left(x+1\right)^3\)

\(\Rightarrow x^3+x^2+x+1\notin Z\) hay \(y\notin Z\) (loại)

Vậy \(x=1\) và \(y\in Z\)

Tiến Nguyễn Minh
Xem chi tiết
Hắc Thiên
Xem chi tiết
Phạm Trung Kiên
8 tháng 1 2020 lúc 21:14

Có p là số nguyên tố,p lẻ 
+)Xét p=3 suy ra 134=2q(17q+24) suy ra q(17q+24)=67
Mà q lớn hơn hoặc = 2 nên vô lí
+)Xét p>3.p nguyên tố nên p ko chia hết cho 3
th1: p chia 3 dư 1.Đặt p=3k+1 nên VT chia hết cho 3 nên VP chia hết cho 3, Từ đó suy ra q chia hết cho 3,mà q nguyên tố nên q=3.Thay vào tìm ra p

th2 : p chia 3 dư 2. Đặt p=3k+2 nên VT chia 3 dư 2. VT=VP nên 2q(17q+24) chia 3 dư 2 

Từ đó có q(17q+24) chia 3 dư 1 nên 17q^2 +24q chia 3 dư 1

Mà 24q chia hết cho 3 nên 17q^2 chia 3 dư 1(loại)

Khách vãng lai đã xóa
Hắc Thiên
8 tháng 1 2020 lúc 22:48

trường hợp 2 hình như ko đúng 

Khách vãng lai đã xóa
Lê Hồ Trọng Tín
Xem chi tiết
shushi kaka
Xem chi tiết
Lê Văn Trưởng
Xem chi tiết
Nguyễn Minh Trang
Xem chi tiết
Nguyễn Đức Trí
7 tháng 8 2023 lúc 13:06

\(p^2-2q^2=1\)

\(\Rightarrow p^2=2q^2+1\)

\(\Rightarrow p\) là số lẻ

Đặt \(p=2n+1\Rightarrow p^2=4n^2+4n+1\)

mà \(p^2=2q^2+1\)

\(\Rightarrow4n^2+4n+1=2q^2+1\)

\(\Rightarrow2\left(2n^2+2n\right)=2q\)

\(\Rightarrow2n^2+2n=q\)

\(\Rightarrow2\left(n^2+n\right)=q\)

\(\Rightarrow q\) là số chẵn

mà \(q\) là số nguyên tố

\(\Rightarrow q=2\)

\(\Rightarrow p^2=2.2^2+1=9\Rightarrow p=3\)

Vậy \(\left(p;q\right)\in\left\{3;2\right\}\) thỏa mãn đề bài

HT.Phong (9A5)
7 tháng 8 2023 lúc 12:58

Ta có: \(p^2-2q^2=1\)

Do 1 là số lẻ nên \(2q^2\) chẵn và \(p\) lẻ  

\(\Rightarrow p^2-1=2q^2\)

\(\Leftrightarrow\left(p-1\right)\left(p+1\right)=2q^2\)

Mà \(p\) lẻ nên \(p+1,p-1\) đều là chẵn 

\(\Rightarrow\left(q-1\right)\left(q+1\right)\) ⋮ 4

\(\Leftrightarrow q^2\) ⋮ 2 \(\Rightarrow q\) ⋮ 2 \(\Rightarrow q=2\)

\(\Rightarrow p^2=2\cdot2^2+1=9\Rightarrow q=3\)

Vậy: (q;p) là (2;3)

Nguyễn Minh Trang
7 tháng 8 2023 lúc 13:06

⇔ @Phong cho mình hỏi đây là gì ạ

Phạm Kim Oanh
Xem chi tiết
Phan Hoàng Nam
Xem chi tiết