tìm các cặp số nguyên tố (p,q) thỏa mãn pt sau:\(20p^3=1+q^3\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn PT: \(x^4+y^3=xy^3+1\)
\(PT\Leftrightarrow x^4+y^3-xy^3-1=0\)
\(\Leftrightarrow\left(x^4-1\right)+\left(y^3-xy^3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1\right)-y^3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1-y^3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x^3+x^2+x+1=y^3\end{cases}}\)
TH1 : \(x=1\Rightarrow y\in Z\)
TH2 : \(x^3+x^2+x+1=y^3\)
Ta có : \(x^3< x^3+x^2+x+1< x^3+3x^2+3x+1\)
\(\Leftrightarrow x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3+x^2+x+1\notin Z\) hay \(y\notin Z\) (loại)
Vậy \(x=1\) và \(y\in Z\)
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm các cặp số nguyên tố(p,q) thỏa mãn: p3+107=2q(17q+24)
Có p là số nguyên tố,p lẻ
+)Xét p=3 suy ra 134=2q(17q+24) suy ra q(17q+24)=67
Mà q lớn hơn hoặc = 2 nên vô lí
+)Xét p>3.p nguyên tố nên p ko chia hết cho 3
th1: p chia 3 dư 1.Đặt p=3k+1 nên VT chia hết cho 3 nên VP chia hết cho 3, Từ đó suy ra q chia hết cho 3,mà q nguyên tố nên q=3.Thay vào tìm ra p
th2 : p chia 3 dư 2. Đặt p=3k+2 nên VT chia 3 dư 2. VT=VP nên 2q(17q+24) chia 3 dư 2
Từ đó có q(17q+24) chia 3 dư 1 nên 17q^2 +24q chia 3 dư 1
Mà 24q chia hết cho 3 nên 17q^2 chia 3 dư 1(loại)
trường hợp 2 hình như ko đúng
Tìm các cặp số nguyên tố (p;q) thỏa mãn:
7pq2+p=q3+43p3+1
Tìm các cặp số nguyên tố thỏa mãn phương trình sau :
\(q^p-p^q=79\)
tìm tất cả các cặp số nguyên tố p,q thỏa mãn các số 5p + q và pq + 7 đều là số nguyên tố
Tìm các cặp số nguyên tố (p;q) thỏa mãn:
p mũ 2 - 2q mũ 2 = 1
\(p^2-2q^2=1\)
\(\Rightarrow p^2=2q^2+1\)
\(\Rightarrow p\) là số lẻ
Đặt \(p=2n+1\Rightarrow p^2=4n^2+4n+1\)
mà \(p^2=2q^2+1\)
\(\Rightarrow4n^2+4n+1=2q^2+1\)
\(\Rightarrow2\left(2n^2+2n\right)=2q\)
\(\Rightarrow2n^2+2n=q\)
\(\Rightarrow2\left(n^2+n\right)=q\)
\(\Rightarrow q\) là số chẵn
mà \(q\) là số nguyên tố
\(\Rightarrow q=2\)
\(\Rightarrow p^2=2.2^2+1=9\Rightarrow p=3\)
Vậy \(\left(p;q\right)\in\left\{3;2\right\}\) thỏa mãn đề bài
Ta có: \(p^2-2q^2=1\)
Do 1 là số lẻ nên \(2q^2\) chẵn và \(p\) lẻ
\(\Rightarrow p^2-1=2q^2\)
\(\Leftrightarrow\left(p-1\right)\left(p+1\right)=2q^2\)
Mà \(p\) lẻ nên \(p+1,p-1\) đều là chẵn
\(\Rightarrow\left(q-1\right)\left(q+1\right)\) ⋮ 4
\(\Leftrightarrow q^2\) ⋮ 2 \(\Rightarrow q\) ⋮ 2 \(\Rightarrow q=2\)
\(\Rightarrow p^2=2\cdot2^2+1=9\Rightarrow q=3\)
Vậy: (q;p) là (2;3)
Tìm tất cả các cặp số nguyên tố \(\left(p;q\right)\) thỏa mãn phương trình sau :
\(20.p^3-q^3=1\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý, giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
giả sử p và q là hai số nguyên tố thỏa mãn đẳng thức p(p-1)=q(q2-1) (*)
a) cmr tồn tại số nguyên k để p-1=kq; q2-1=kp
b) tìm tất cả các số nguyên tố p, q thỏa mãn pt (*)
ai làm đc thì trình bày nha :D