1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
Cho các số nguyên tố p, q, r và n là số tự nhiên lẻ thỏa mãn: pn + qn = r2
CMR: n = 1
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
tìm các số a,b nguyên thỏa mãn \(a^3+2=b^2\) và \(a^2+2\left(a+b\right)\) là số nguyên tố
Tìm cặp số nguyên (x;y) thỏa mãn :\(1+\dfrac{1}{y+\dfrac{1}{3+\dfrac{1}{x}}}=\dfrac{43}{30}\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: \(x^5+y^2=xy^2+1\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn PT: \(x^4+y^3=xy^3+1\)
Tìm các cặp số nguyên (x; y) thỏa mãn: \(\left|x^2-2x\right|-\dfrac{1}{2}< y< 2-\left|x-1\right|\)
Tìm số tự nhiên m, n thỏa mãn \(3^{3m^2+6n-61}+4\) là số nguyên tố