Tìm giá trị lớn nhất của:
\(A=0,5-\left|x-3.5\right|\)
Tìm giá trị lớn nhất của :
\(A=0,5-\left|x-3,5\right|\)
\(B=-\left|1,4-x\right|-2\)
a) Ta có: \(\left|x-3,5\right|\ge0\) với mọi x
\(\Rightarrow-\left|x-3,5\right|\le0\) với mọi x
\(\Rightarrow0,5-\left|x-3,5\right|\le0,5\) với mọi x
Dấu "=" xảy ra khi và chỉ khi x = 3,5
Vậy MAX A = 0,5 khi x = 3,5
b) Ta có : \(\left|1,4-x\right|\ge0\) với mọi x
\(\Rightarrow-\left|1,4-x\right|\le0\) với mọi x
\(\Rightarrow-\left|1,4-x\right|-2\le-2\) với mọi x
Dấu "=" xảy ra khi và chỉ khi x = 1,4
Vậy MAX B = -2 khi x = 1,4
\(A=0,5-\left|x-3,5\right|\)
Ta có \(\left|x-3,5\right|\)\(\ge\)0 Với mọi x
\(\Rightarrow\) 0,5-\(\left|x-3,5\right|\)\(\le\)0,5 Với mọi x
\(\Rightarrow Amax\) =0,5 khi x-3,5=0
\(\Leftrightarrow\) Amax=0,5 khi x=3,5
B thì tương tự
giúp mình với
a) Tìm giá trị nhỏ nhất của biểu thức: \(\left(x+0,5\right)^2-13\)
b) Tìm giá trị lớn nhất của biểu thức : \(3-\left(2x-2\right)^2\)
Tìm giá trị lớn nhất và nhỏ nhất của hàm số :
\(f\left(x\right)=\left(0,5\right)^{\sin^2x}\)
\(0\le\sin^2x\le1\Rightarrow0,5^0\ge0,5^{\sin^2x}\ge0,5^1\)
\(\Leftrightarrow1\ge f\left(x\right)\ge\frac{1}{2}\)
\(\Leftrightarrow\) Max f(x) = 1 khi \(x=k\pi\)
Min f(x) =\(\frac{1}{2}\) khi \(x=\frac{\pi}{2}+k\pi\) \(k\in Z\)
Đặt \(t=\sin^2x\) với \(t\in\left[0;1\right]\Rightarrow f\left(x\right)=0,5^t=g\left(t\right)\) với \(t\in\left[0;1\right]\)
Ta có : \(g'\left(t\right)=0,5^1\ln0,5=-0,5^t\ln2< 0\) với mọi \(t\in\left[0;1\right]\) hàm số nghịch biến với mọi \(t\in\left[0;1\right]\)
\(\Rightarrow0\le t\le1\Rightarrow g\left(0\right)\ge g\left(t\right)\ge g\left(1\right)\Leftrightarrow1\ge g\left(t\right)\ge\frac{1}{2}\)
Vậy Max f(x) = 1 khi \(x=k\pi\)
Min \(f\left(x\right)=\frac{1}{2}\) khi \(x=\frac{\pi}{2}+k\pi\) (k thuộc Z)
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
Tìm giá trị nhỏ nhất, giá trị lớn nhất:
a) \(A=0,5-\left|5x\right|\) Tìm GTLN của A
b) \(B=\frac{2}{3}+\left|5-x\right|\) Tìm GTNN của B
c) \(C=5.\left(x-2\right)^2+1\) Tìm GTNN của C
Tìm giá trị của x, để cho giá trị của A là lớn nhất:
A= \(522012-\left[2012.0,25-2^3.5-5^2.\left(x-1\right)+2012\right]^{2012}\)
Giúp mình với, mình đang vội, bạn nào làm nhanh và đúng tớ cho 1 like
A=522012 - [ 2012.(0,25 + 1) - 40 -25.(x -1)]^2012
A=522012 - [2515 - 40 - 25.(x - 1)]^2012
A=522012 - [2475 - 25.( x - 1)]^2012
*Để A có giá trị lớn nhất thì [2475 - 25.(x - 1)]^2012 phải là số tự nhiên bé nhất. (vì x^2012 >0 )
=> [2475 - 25.(x - 1)]^2012 =0
=>2475 - 25.(x-1) =0
=> 25.(x-1) = 2475
=> x - 1 = 99
=> x = 100
Vậy x = 100.
Tìm giá trị lớn nhất của biểu thức: \(A=\left|x-3\right|.\left(2-\left|x-3\right|\right)\)
1)tìm x biết
a)1,6-\(\left|x-0,2\right|\)=0
b)\(\left|x-1,5\right|\)+\(\left|2,5-x\right|\)=0
2)tìm giá trị lớn nhất của:
A=0,5-\(\left|x-3,5\right|\)
B=-\(\left|1,4-x\right|\)-2
Bài 1:a/ 1.6-Ix-0.2I=0
Có 2 trường hợp:
TH1: x-0.2=1.6
=> x=1.6+0.2=1.8
TH2: x-0.2=-1.6
=> x=-1.4
b/ Có 2 trường hợp:
TH1:x-1.5=0=>x=1.5
TH2: 2.5-x=0=> x=2.5
Bài 2: a/ Vì Ix-3.5I\(\ge0\)
=> Amax=0.5-0=0.5 khi x=3.5
b/ Vì -I1.4-xI \(\le0\)
Nên Bmax=0-2=-2 khi x=1.4
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất
\(A=\dfrac{2022}{\left|x\right|+2003}\)
\(B=\left(\left|x\right|+1\right)^{10}+2009\)
a: |x|+2003>=2003
=>A<=2022/2003
Dấu = xảy ra khi x=0
b: |x|+1>=1
=>(|x|+1)^10>=1
=>B>=2010
Dấu = xảy ra khi x=0