\(a,\left(a+b\right)^2-\left(a-b\right)^2\)
\(b,\left(a+b\right)^3-\left(a-b\right)^3-2b^3\)
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3-a^3-b^3-c^3\)
\(=a^3+3a^2b+3ab^2+b^3+3c\left(a^2+2ab+b^2\right)+3ac^2+3bc^2-a^3-b^3\)
\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)
\(=3\left(a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc\right)\)
\(=3\left[\left(a^2b+ab^2\right)+\left(a^2c+abc\right)+\left(ac^2+bc^2\right)+\left(b^2c+abc\right)\right]\)
\(=3\left[ab\left(a+b\right)+ac\left(a+b\right)+c^2\left(a+b\right)+bc\left(a+b\right)\right]\)
\(=3\left(a+b\right)\left(ab+ac+c^2+bc\right)\)
\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+b\right)\)
Châu ơi!đăng làm j z
PTĐTTNT:\(3abc+a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\left(c-b-a\right)-c\left(b-c\right)\left(a-c\right)\)
\(=3abc+a^3-a^2b-a^2c+b^3-b^2a-b^2c+c^3-c^2b-c^2a-\left(abc-bc^2-c^2a+c^3\right)\)
\(=2abc+a^3-a^2b-a^2c+b^3-b^2c-b^2a\)
\(=\left(a^3+a^2b-a^2c\right)-\left(2a^2b+2ab^2-2abc\right)+\left(ab^2+b^3-b^2c\right)\)
\(=a^2\left(a+b-c\right)-2ab\left(a+b-c\right)+b^2\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a+b-c\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a+b-c\right)\left(a-b\right)^2\) nha !
P/S:Ko có mục đích xấu,đăng lên cho bạn thôi.
Trả lời
Ở phần kết quả bạn vẫn chưa thu gọn hết đâu nha
\(=\left(a+b+c\right).\left(a-b\right)^2\)
Mk góp ý thôi mong mọi người đừng có đáp gạch đáp đá nha
Study well
a)\(\left(a+b+c\right)^3-\left(a+b-c\right)^3-\left(b+c-a\right)^3-\left(c+a-b\right)^3\)
b)\(2a^2b^2+2b^2c^2-2c^2a^2-a^4-b^4-c^4\)
c)\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-8\left(a+b+c\right)^2\)
d)\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5\)
Cho
\(\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{3}\)
\(\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)\left(c+2b\right)}=3\)
Hãy tính \(\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
Tai sao \(\left(\frac{a^2}{a+2b}+\frac{b^2}{b+2a}\right)+2\left(\frac{a^2}{2a+b}+\frac{b^2}{2b+a}\right)\ge\)\(\ge\frac{\left(a+b\right)^2}{3\left(a+b\right)}+2\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)
Áp dụng Bất đẳng thức Cauchy Schwarz dạng Engel ta có :
\(\frac{a^2}{a+2b}+\frac{b^2}{b+2a}\ge\frac{\left(a+b\right)^2}{a+2b+b+2a}=\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)
\(2\left(\frac{a^2}{2a+b}+\frac{b^2}{2b+a}\right)\ge2\left(\frac{\left(a+b\right)^2}{2a+b+2b+a}\right)=2.\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\left(\frac{a^2}{a+2b}+\frac{b^2}{b+2a}\right)+2\left(\frac{a^2}{2a+b}+\frac{b^2}{2b+a}\right)\ge\frac{\left(a+b\right)^2}{3\left(a+b\right)}+2.\frac{\left(a+b\right)^2}{3\left(a+b\right)}\)
Vậy ta có ngay điều phải chứng minh
PTĐT thành nhân tử (PP xét giá trị riêng)
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
c) \(\left(a+b+c\right)^5-a^5-b^5-c^5\)
d) \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
\(a,\) Đặt \(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)
Với \(a=-b\) ta được \(A=0\)
Do vai trò bình đẳng của a,b,c và A bậc 3 nên nhân tử còn lại là hằng số k
Do đó \(A=k\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Cho \(a=b=c=1\Leftrightarrow3^3-1-1-1=8k\Leftrightarrow k=3\)
Do đó \(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(b,\) Đặt \(B=a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
Với \(a=b\Leftrightarrow B=0\)
Do vai trò bình đẳng của a,b,c và B bậc 4 nên \(B=\left(a-b\right)\left(b-c\right)\left(c-a\right)Q\) trong đó Q bậc nhất
Do đó \(Q=\left(a+b+c\right)R\) với R là hằng số
\(\Leftrightarrow B=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)R\)
Cho \(a=1;b=2;c=3\Leftrightarrow-12=12R\Leftrightarrow R=-1\)
Do đó \(B=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
\(c,\) Đặt \(C=\left(a+b+c\right)^5-a^5-b^5-c^5\)
Cho \(a=-b\Leftrightarrow C=0\)
Do vai trò bình đẳng của a,b,c và C bậc 5 nên \(C=\left(a+b\right)\left(b+c\right)\left(c+a\right)P\) trong đó P bậc 2
Do đó \(P=\left(a^2+b^2+c^2+ab+bc+ca\right)R\) với R là hằng số
\(\Leftrightarrow C=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)R\)
Cho \(a=1;b=2;c=3\Leftrightarrow7500=1500R\Leftrightarrow R=5\)
Do đó \(C=5\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)
\(d,\) Đặt \(D=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
Với \(a=b+c\Leftrightarrow D=0\)
Do vai trò bình đẳng của a,b,c và D bậc 4 nên \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)R\) với R bậc nhất
Do đó \(R=\left(a+b+c\right)Q\) với Q là hằng số
\(\Leftrightarrow D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)Q\)
Cho \(a=b=c=1\Leftrightarrow Q=1\)
Do đó \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)\)
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
66. Phân tích đa thức thành nhân tử
a) \(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
b) \(a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)^3\)
c) \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
d) \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
e) \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
66. Phân tích đa thức thành nhân tử:
a) \(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
b) \(a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)^3\)
c) \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
d) \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
e) \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
Phân tích đa thức thành nhân tử :
a) \(â\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
b) \(a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)^3\)
c) \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
d) \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
e) \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-2\right)+c\left(a+b\right)^2\left(a-b\right)\)
\(=\left(b-c\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)
nguồn câu hỏi tương tự
Trang 136 trong nâng cao phát triển có viết rồi mình cóp nó vô để mọi người dễ đọc nhé !