Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyền Anh Kute
Xem chi tiết
Huyền Anh Kute
17 tháng 9 2017 lúc 11:48

Giúp mk vs các pạn ơi!!! Mk cần gấp!!!

Hà Đan Vy
17 tháng 9 2017 lúc 16:54

mình mới học lớp 6 xin lỗi nha

nguyen tien hung
Xem chi tiết
Ngọc Khánh
Xem chi tiết
Trên con đường thành côn...
13 tháng 11 2021 lúc 17:57

a)

Ta có:

\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\)

\(\ge0-2=-2\)

Vậy \(A_{min}=-2\), đạt được khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)

b)\(B=4x^2+4x+8=4x^2+4x+1+7\)

\(=\left(2x+1\right)^2+7\ge0+7=7\)

Vậy \(B_{min}=7\), đạt được khi và chỉ khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)

Trên con đường thành côn...
13 tháng 11 2021 lúc 18:10

c)

Ta có:

\(C=3x-x^2+2=2-\left(x^2-3x\right)\)

\(=2+\dfrac{9}{4}-\left(x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}\right)\)

\(=\dfrac{17}{4}-\left(x-\dfrac{3}{2}\right)^2\le\dfrac{17}{4}-0=\dfrac{17}{4}\)

Vậy \(C_{max}=\dfrac{17}{4}\), đạt được khi và chỉ khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

d) Ta có:

\(D=-x^2-5x=-\left(x^2+5x\right)=\dfrac{25}{4}-\left(x^2+2x.\dfrac{5}{2}+\dfrac{25}{4}\right)\)

\(=\dfrac{25}{4}-\left(x+\dfrac{5}{2}\right)^2\le\dfrac{25}{4}-0=\dfrac{25}{4}\)

Vậy \(D_{max}=\dfrac{25}{4}\), đạt được khi và chỉ khi \(x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\)

e) Ta có:

\(E=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2+4y^2+5^2-4xy+10x-20y+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

\(\ge0+0+2=2\)

Vậy \(E_{min}=2\), đạt được khi và chỉ khi \(x-2y+5=y-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Bi Bi Kiều
Xem chi tiết
nguyen duc minh
Xem chi tiết

viết lại đề đi

Khách vãng lai đã xóa
Minh Nguyen
1 tháng 2 2020 lúc 22:18

\(A=25x^2-20x+7\)

\(\Leftrightarrow A=\left(5x-2\right)^2+3\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow5x-2=0\Leftrightarrow x=\frac{2}{5}\)

Vậy \(minA=3\Leftrightarrow x=\frac{2}{5}\)

\(B=-x^2+2x-2\)

\(\Leftrightarrow B=-\left(x^2-2x+1\right)-3\)

\(\Leftrightarrow B=-\left(x-1\right)^2-3\le-3\)

Dấu " = " xảy ra \(\Leftrightarrow x=1\)

Vậy \(maxB=-3\Leftrightarrow x=1\)

\(C=9x^2-12x\)

\(\Leftrightarrow C=\left(9x^2-12x+4\right)-4\)

\(\Leftrightarrow C=\left(3x-2\right)^2-4\ge-4\)

Dấu " = " xảy ra \(\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)

Vậy \(minC=-4\Leftrightarrow x=\frac{2}{3}\)

\(D=3-10x^2-4xy-4y^2\)

\(\Leftrightarrow D=-\left(4y^2+4xy+x^2+9x^2\right)-3\)

\(\Leftrightarrow D=-\left[\left(2y-x\right)^2+3x^2\right]-3\le-3\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2y-x=0\\3x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=0\end{cases}}\)

Vậy \(maxD=-3\Leftrightarrow x=y=0\)

\(E=4x-x^2+1\)

\(\Leftrightarrow E=-\left(x^2-4x+4\right)+5\)

\(\Leftrightarrow E=-\left(x-2\right)^2+5\le5\)

Dấu " = " xảy ra \(\Leftrightarrow x=2\)

Vậy \(maxE=5\Leftrightarrow x=2\)

Khách vãng lai đã xóa
Linh Phương Nguyễn
Xem chi tiết
Hồng Phúc
27 tháng 8 2021 lúc 9:50

a, \(x^2+y^2-2x+6y-30\)

\(=x^2-2x+1+y^2+6y+9-40\)

\(=\left(x-1\right)^2+\left(y+3\right)^2-40\ge-40\)

\(min=-40\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

Họ Và Tên
27 tháng 8 2021 lúc 9:50

a)x^2+y^2-2x+6y-30=(x-1)^2+(y+3)^2-40\(\ge\) -40

dấu = xảy ra khi x=1,y=-3

Hồng Phúc
27 tháng 8 2021 lúc 9:51

b, \(4-2x^2\le4\)

\(max=4\Leftrightarrow x=0\)

c, \(-x^2+10x-5=-\left(x^2-10x+25\right)+20=-\left(x-5\right)^2+20\le2\text{​​}0\)

\(max=20\Leftrightarrow x=5\)

Nguyễn Ngọc Mai Anh
Xem chi tiết
Đinh Đức Hùng
6 tháng 8 2017 lúc 21:00

\(A=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(A_{min}=2\) tại \(x=-3;y=1\)

Cíuuuuuuuuuu
Xem chi tiết
Akai Haruma
28 tháng 8 2021 lúc 10:29

a.

$64x^3-16x^2+x=x(64x^2-16x+1)$

$=x(8x-1)^2$

b.

$36-4xy+24y-x^2=(4y^2+24y+36)-(x^2+4xy+4y^2)$

$=(2y+6)^2-(x+2y)^2=(2y+6-x-2y)(2y+6+x+2y)$

$=(6-x)(x+4y+6)$

c.

$x^2+10x-2010.2020$

$=x^2+10x-(2015-5)(2015+5)

$=x^2+10x-(2015^2-5^2)$

$=(x^2+10x+5^2)-2015^2=(x+5)^2-2015^2$

$=(x+5-2015)(x+5+2015)=(x-2010)(x+2020)$

Akai Haruma
28 tháng 8 2021 lúc 10:30

d.

$25x^2-121+22y-y^2$

$=(5x)^2-(y^2-22y+11^2)$

$=(5x)^2-(y-11)^2=(5x-y+11)(5x+y-11)$

e.

$(x^2+2x)(x^2+2x-2)-3$

$=(x^2+2x)^2-2(x^2+2x)-3$

$=(x^2+2x)^2+(x^2+2x)-3(x^2+2x)-3$

$=(x^2+2x)(x^2+2x+1)-3(x^2+2x+1)$

$=(x^2+2x+1)(x^2+2x-3)$

$=(x+1)^2[x(x-1)+3(x-1)]$

$=(x+1)(x-1)(x+3)$

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 15:08

a: \(64x^3-16x^2+x\)

\(=x\left(64x^2-16x+1\right)\)

\(=x\left(8x-1\right)^2\)

b: \(36-4xy+24y-x^2\)

\(=-\left(x-6\right)\left(x+6\right)-4y\left(x-6\right)\)

\(=\left(x-6\right)\left(-x-6-4y\right)\)

c: \(x^2+10x-2010\cdot2020\)

\(=x^2+2020x-2010x-2010\cdot2020\)

\(=x\left(x+2020\right)-2010\left(x+2020\right)\)

\(=\left(x+2020\right)\left(x-2010\right)\)

Nguyễn Thị Trang
Xem chi tiết
Hoàng Phúc
11 tháng 7 2016 lúc 11:14

Đặt \(A=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2-4xy+10x+5y^2-22y+28\)

\(=x^2-x\left(4y-10\right)+5y^2-22y+28\)

\(=x^2-2.x.\frac{4y-10}{2}+\left(\frac{4y-10}{2}\right)^2+5y^2-22y-\left(\frac{4y-10}{2}\right)^2+28\)

\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-\frac{16y^2-80y+100}{4}+28\)

\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-4y^2+20y-25+28\)

\(=\left(x-\frac{4y-10}{2}\right)^2+y^2-2y+3=\left(x-\frac{4y-10}{2}\right)^2+y^2-2.y.1+1^2+2\)

\(=\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\)

\(\left(x-\frac{4y-10}{2}\right)^2\ge0;\left(y-1\right)^2\ge0=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2\ge0\)

\(=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\ge2\) (với mọi x,y)

Dấu "=" xảy ra \(< =>\hept{\begin{cases}\left(x-\frac{4y-10}{2}\right)^2=0\\\left(y-1\right)^2=0\end{cases}}< =>\hept{\begin{cases}x-\frac{4y-10}{2}=0\\y=1\end{cases}}< =>\hept{\begin{cases}x-\frac{4-10}{2}=0\\y=1\end{cases}}\)

\(< =>\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy MInA=2 khi x=-3;y=1


 

Nguyễn Thị Trang
11 tháng 7 2016 lúc 16:23

Amin=2