a, \(x^2+y^2-2x+6y-30\)
\(=x^2-2x+1+y^2+6y+9-40\)
\(=\left(x-1\right)^2+\left(y+3\right)^2-40\ge-40\)
\(min=-40\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
a)x^2+y^2-2x+6y-30=(x-1)^2+(y+3)^2-40\(\ge\) -40
dấu = xảy ra khi x=1,y=-3
b, \(4-2x^2\le4\)
\(max=4\Leftrightarrow x=0\)
c, \(-x^2+10x-5=-\left(x^2-10x+25\right)+20=-\left(x-5\right)^2+20\le2\text{}0\)
\(max=20\Leftrightarrow x=5\)
b,4-2x^2\(\le\)4-2.0=4
dấu = xảy ra khi x=0
-x^2+10x-5=-(x^2-10x+25)+20\(\le\)20
dấu = xảy ra khi x=5
d, \(-3x^2+2x-5\)
\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{14}{3}\)
\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{14}{3}\le-\dfrac{14}{3}\)
\(max=-\dfrac{14}{3}\Leftrightarrow x=\dfrac{1}{3}\)
a) \(x^2+y^2-2x+6y-30=\left(x-1\right)^2+\left(y+3\right)^2-40\ge-40\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
b) \(-2x^2\le0\Rightarrow4-2x^2\le4\)
\(ĐTXR\Leftrightarrow x=0\)
c) \(-x^2+10x-5=-\left(x-5\right)^2+20\le20\)
\(ĐTXR\Leftrightarrow x=5\)
d) \(-3x^2+2x-5=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{14}{3}\le-\dfrac{14}{3}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{3}\)
d,-3x^2+2x-5=-3(x^2-2/3x)-5=-3(x^2-2x.1/3)-5=-3(x^2-2x.1/3+1/9)-5+1/3
=-3(x-1/3)^2-14/3\(\le\)-14/3
dấu = xảy ra khi x=1/3
tick mik 4 cái nha bạn
a: Ta có: \(x^2+y^2-2x+6y-30\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)-40\)
\(=\left(x-1\right)^2+\left(y+3\right)^2-40\ge-40\forall x,y\)
Dấu '=' xảy ra khi x=1 và y=-3
c: Ta có: \(-x^2+10x-5\)
\(=-\left(x^2-10x+5\right)\)
\(=-\left(x^2-10x+25-20\right)\)
\(=-\left(x-5\right)^2+20\le20\forall x\)
Dấu '=' xảy ra khi x=5