tính các góc của tứ giác ABCD , biết rằng :
góc a : góc b : góc c : góc d = 1:2:3:4
1. cho tứ giác ABCD biết góc A : góc B : góc c ; góc D = 1:2:3:4 tính các góc của tứ giác
2. chó tứ giác ABCD có góc A =105 độ: góc B = 130 độ, góc C-góc D = 25 độ. Tính góc C, góc D
3. Cho tứ giác ABCD có góc A = 57 độ, C= 110 độ, D= 75 độ. Tính góc ngoài tại B
4. Chứng minh rằng: Biết 1 tứ giác tổng 2 đường chéo lớn hơn nửa chu vi của tứ giác
5. Cho tứ giác ABCD có góc B+gócD= 180 độ, AC là tia phân giác góc A. Chứng minh cạnh CB = cạnh CD
1: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360
Áp dụng tính chất của DTSBN, ta được:
a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36
=>a=36; b=72; c=108; d=144
2:
góc C+góc D=360-130-105=230-105=125
góc C-góc D=25 độ
=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ
3:
góc B=360-57-110-75=118 độ
số đo góc ngoài tại B là:
180-118=62 độ
1A Cho tứ giác ABCD biết góc A : góc B : góc C : góc D = 4:3:2:1
a) Tính các góc của tứ giác ABCD
b) Các tia pg của góc C và góc D cắt nhau tại E . Các đường pg góc ngoài tại các đỉnh C và D cắt nhau tại F . Tính góc CED vầ CFD
1B . Tính số đo các góc C và D của tứ giác ABCD biết góc = 120độ ,góc B 90 độ góc C = 2gócD
( vẽ hình cả 2 bài đc k ạ , cảm ơn các bạn nhiều )
a) Ta thấy : A + B + C + D = 360°
Tự áp dụng tính chất dãy tỉ số bằng nhau ta có :
A = 144°
B = 108°
C = 72°
D = 36°
b) Vì DE , CE là phân giác ADC và ACD
=> EDC = ADE = 18°
=> BCE = ECD = 36°
Xét ∆DEC ta có :
EDC + DEC + ECD = 180°
=> DEC = 126°
Ta có : góc ngoài tại đỉnh C
=> 180° - BCD = 108°
Góc ngoài tại đỉnh D
=> 180° - ADC = 144°
Mà DF , CF là phân giác ngoài góc C , D
=> CDF = 72°
=> DCF = 54°
Xét ∆CDF ta có :
CDF + DFC + DCF = 180°
=> DFC = 44°
Bài 3: Cho tứ giác ABCD có AB//CD và góc D =60 độ
a) Tính số đo góc A?
b) Biết góc B phần góc D = 4/5. Tính góc B, góc C
Bài 4: Cho tứ giác ABCD, góc A - góc B = 40 độ. Các tia phân giác của góc C, góc D cắt nhau tại O. Cho biết góc COD= 110 độ. Chứng minh rằng AB vuông góc với BC
Nhờ các bạn hướng dẫn mình hai bài này
a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.
Vì AB//CD, ta có góc ACD = góc BAD.
Vậy số đo góc A là 120 độ.
b) Gọi góc BCD là x độ.
Theo giả thiết, góc B phần góc D = 4/5, ta có:
góc B = (4/5) * góc D
= (4/5) * 60
= 48 độ.
Vì AB//CD, ta có góc BCD = góc BAD.
Vậy góc BAD = góc BCD = x độ.
Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.
Ta có: góc A + góc B + góc C + góc D = 360 độ.
Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:
120 + 48 + góc C + 60 = 360
góc C = 360 - 120 - 48 - 60 = 132 độ.
Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.
* Ib = bài 4
Tính các góc của tứ giác ABCD biết rằng :
Góc A : góc B : góc C : góc D = 2 : 3 : 5 : 8
Có tổng ba góc của tứ giác là 360 độ.
=> A + B + C + D = 360 độ
\(\Rightarrow\frac{A}{2}=\frac{B}{3}=\frac{C}{5}=\frac{D}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{A}{2}=\frac{B}{3}=\frac{C}{5}=\frac{D}{8}=\frac{A+B+C+D}{2+3+5+8}=\frac{360}{18}=20\)
Có: \(\frac{A}{2}=20\Rightarrow A=40^o\)
\(\frac{B}{3}=20\Rightarrow B=60^o\)
\(\frac{C}{5}=20\Rightarrow C=100^o\)
\(\frac{D}{8}=20\Rightarrow D=160^o\)
Ta có : góc A + góc B + góc C + góc D = 360o
Mà góc A : góc B : góc C : góc D = 2 : 3 : 5 : 8
\(=>\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{5}=\frac{\widehat{D}}{8}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{2+3+5+8}=\frac{360^o}{18}=20^o\)
=> góc A = 20 độ . 2 = 40 độ
góc B = 20 độ . 3 = 60 độ
góc C = 20 độ . 5 = 100 độ
góc D = 20 độ . 8 = 160 độ
Tính các góc tứ giác ABCD , biết rằng góc A : góc B : góc C : góc D = 2 : 3 : 5 : 8
\(\frac{A}{2}=\frac{B}{3}=\frac{C}{5}=\frac{D}{8}\)
\(=\frac{A+B+C+D}{2+3+5+8}=\frac{360}{18}=20\)
\(\Rightarrow\)A = 20.2 = 40 độ
B = 20 . 3 = 60 độ
C = 20 . 5 = 100 độ
D = 20 . 8 = 160 độ
Vậy ......................
Tính các góc của tứ giác ABCD, biết rằng: ∠ A: ∠ B: ∠ C: ∠ D= 1 : 2 : 3 : 4
Theo bài ra, ta có:
∠ A+ ∠ B+ ∠ C+ ∠ D= 360 0 (tổng các góc của tứ giác)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
Vậy: ∠ A= 1. 36 0 = 36 0 ∠ B= 2. 36 0 = 72 0
∠ C= 3. 36 0 = 108 0 ; ∠ D= 4. 36 0 = 144 0
Tính các góc của tứ giác ABCD biết : Góc A : Góc B : Góc C : Góc D = 1:2:3:4
THeo bài ra ta có:
A : B : C : D = 1:2:3:4 =>\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}\) VÀ A + B +C + D = 360 ĐỘ ( VÌ TỔNG 4 GÓC CỦA TỨ GIÁC BẰNG 360 ĐỘ)
THeo dãy tỉ số bằng nhau :
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}=\frac{A+B+C+D}{1+2+2+4}=\frac{360}{10}=36\)
=> A = 36.1 = 36 ĐỘ
=> B = 36.2 = 72 ĐỘ
=>C = 36.3 = 108 ĐỘ
=> D = 36.4 = 144 ĐỘ
1. Cho tứ giác ABCD có góc C=120, góc D=100, góc A-B=40. Tính góc A,B
2. Tính các góc tứ giác MNPQ biết
góc M:N:P:Q=1:3:4:7
Bài 1)
Ta có : A + B + C + D = 360 độ
=> A + B = 140 độ
Ta có :
A = \(\frac{140+40}{2}\)= 90 độ
=> B = 90 - 40 = 50 độ
Bài 1 :
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Rightarrow\widehat{A}+\widehat{B}+120^o+100^o=360^o\)
\(\Rightarrow\widehat{A}+\widehat{B}+220^o=360^o\)
\(\Rightarrow\widehat{A}+\widehat{B}=140^o\)
Mà : \(\widehat{A}-\widehat{B}=40^o\)
\(\Rightarrow\widehat{A}+\widehat{A}+\widehat{B}-\widehat{B}=140^o+40^o\)
\(\Rightarrow2\widehat{A}=180^o\Leftrightarrow\widehat{A}=90^o\)
\(\Leftrightarrow\widehat{B}=140^o-\widehat{A}=140^o-90^o=50^o\)
\(KL:\widehat{A}=90^o;\widehat{B}=50^o\)
Bài 2)
Ta có M : N : P : Q = 1 : 3 : 4 : 7
=> M = N/3 = P/4 =Q/7
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
=> M + N+ P + Q /1 +3+4+7 = \(\frac{360}{15}\)=24
=> M = 24 độ
N = 72 độ
P = 96 độ
Q = 168 độ
Bài 1: Cho tứ giác ABCD biết góc A : B : C : D = 1 : 2 : 3 : 4
a) Tính các góc của tứ giác ABCD
b) Chứng minh: AB // CD
c) Gọi giao điểm của AD cắt BC = E. Tính các góc của tam giác CDE
Bài 2: Cho tứ giác ABCD có góc C = \(80^0\) , D = \(70^0\) . Các tia phân giác của các góc A và B cắt nhau tại I. Tính AIB
Bài 3: Cho tứ giác ABCD có AB = BC; CD = DA
a) Chứng minh rằng BD là đường trung trực của AC
b) Cho biết góc B = \(100^0\) ; D = \(70^0\) . Tính góc A và C
Bài 1)
a) Vì A: B:C:D = 1:2:3:4
=> A= B/2 = C/3=D/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
A = 36 độ
B= 72 độ
C=108 độ
D= 144 độ
b) Ta có :
A + D = 36 + 144 = 180 độ(1)
B+C = 72 + 108 = 180 độ(2)
Từ (1) và (2) ta có:
=> AB //CD (dpcm)
c) Ta có :
CDE + ADC = 180 độ(kề bù)
=> CDE = 180 - 144 = 36
Ta có :
BCD + DCE = 180 độ ( kề bù)
=> DCE = 180 - 108 = 72
Xét ∆CDE ta có :
CDE + DCE + DEC = 180 ( tổng 3 góc trong ∆)
=> DEC = 180 - 72 - 36 = 72 độ
Bài 2)
a) Ta có ABCD có :
A + B + C + D = 360 độ
Mà C = 80 độ
D= 70 độ
=> A+ B = 360 - 80 - 70 = 210 độ
Ta có AI là pg góc A
BI là pg góc B
=> DAI = BAI = A/2
=> ABI = CBI = B/2
=> BAI + ABI = A + B /2
=> BAI + ABI = 210/2 = 105
Xét ∆IAB ta có :
IAB + ABI + AIB = 180 độ
=> AIB = 180 - 105
=> AIB = 75 độ
=>
1. Cho tứ giác ABCD có góc B= 120 độ, góc C= 50 độ, góc D= 90 độ. Tính góc A và góc ngoài của góc A
2. chó tứ giác ABCD biết chu vi tam giác ABD= 68cm, tam giácBCD= 40cm,chu vi tứ giác ABCD= 54cm. Tính độ dài đường chéo BD
3. Chứng minh rằng các góc của 1 tứ giác không thể đều là góc nhọn, không đều là góc tù
4. Cho tứ giác ABCD có AB= BC, BD=CA
a) Chứng minh BD là đường trung trực của AC
b) góc B= 120 độ, góc D= 80 độ.Tính góc A, góc C
4: Sửa đề: DA=DC
a: BA=BC
DA=DC
=>BD là trung trực của AC
b: góc A+góc C=360-120-80=160 độ
Xét ΔBAD và ΔBCD có
BA=BD
AD=CD
BD chung
=>ΔBAD=ΔBCD
=>góc BAD=góc BCD=160/2=80 độ
3: Nếu bốn góc trong tứ giác đều là góc nhọn thì chắc chắn tổng 4 góc cộng lại sẽ nhỏ hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Nếu bốn góc trong tứ giác đều là góc tù thì chắc chắn tổng 4 góc cộng lại sẽ lớn hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Do đó: 4 góc trong 1 tứ giác không thể đều là góc nhọn hay đều là góc tù được