So sánh giúp mình với
\(\left(\dfrac{4}{9}\right)^{15}\) và \(\left(\dfrac{8}{27}\right)^{13^{ }}\)
Tính nhanh:
13) \(\dfrac{45}{8}\left(\dfrac{4}{15}-\dfrac{7}{8}\right)+\dfrac{45}{8}\left(\dfrac{11}{15}+\dfrac{9}{8}\right)\)
14) \(\dfrac{15}{7}\left(\dfrac{49}{35}-\dfrac{27}{8}\right)-\left(\dfrac{2}{5}-\dfrac{27}{4}\right):\dfrac{7}{15}\)
13)\(\dfrac{45}{8}\left(\dfrac{4}{15}-\dfrac{7}{8}\right)+\dfrac{45}{8}\left(\dfrac{11}{15}+\dfrac{9}{8}\right)\)
=\(\dfrac{45}{8}\left(\dfrac{4}{15}-\dfrac{7}{8}+\dfrac{11}{15}+\dfrac{9}{8}\right)\)
=\(\dfrac{45}{8}\left[\left(\dfrac{4}{15}+\dfrac{11}{15}\right)-\left(\dfrac{7}{8}-\dfrac{9}{8}\right)\right]\)
=\(\dfrac{45}{8}.\dfrac{5}{4}\)=\(\dfrac{225}{32}\)
14)\(\dfrac{15}{7}\left(\dfrac{49}{35}-\dfrac{27}{8}\right)-\left(\dfrac{2}{5}-\dfrac{27}{4}\right):\dfrac{7}{15}\)
=\(\dfrac{15}{7}\left(\dfrac{49}{35}-\dfrac{27}{8}\right)-\left(\dfrac{2}{5}-\dfrac{27}{4}\right).\dfrac{15}{7}\)
=\(\dfrac{15}{7}\left[\left(\dfrac{49}{35}-\dfrac{27}{8}\right)-\left(\dfrac{2}{5}-\dfrac{27}{4}\right)\right]\)
=\(\dfrac{15}{7}\left(\dfrac{49}{35}-\dfrac{27}{8}-\dfrac{2}{5}+\dfrac{27}{4}\right)\)
=\(\dfrac{15}{7}.\dfrac{35}{8}\)=\(\dfrac{75}{8}\)
bài 6: tính :
\(\dfrac{10^9.\left(-81\right)^{10}}{\left(-8\right)^4.25^5.9^{10}}\)
b,\(\dfrac{9^4.\left(-4\right)^5.25^3}{8^3,\left(-27\right)^2.5^7}\)
c,\(\dfrac{3^{186}.\left(-25\right)^{50}}{\left(-15\right)^{100}.27^{29}}\)
a: \(=\dfrac{2^9\cdot5^9\cdot3^{40}}{2^{12}\cdot5^{10}\cdot3^{20}}=\dfrac{3^{20}}{5\cdot2^3}\)
b: \(=\dfrac{-3^8\cdot2^{10}\cdot5^6}{2^9\cdot\left(-1\right)\cdot3^6\cdot5^7}=\dfrac{-2}{5}\cdot3^2=-\dfrac{18}{5}\)
c: \(=\dfrac{3^{186}\cdot5^{100}}{5^{100}\cdot3^{187}}=\dfrac{1}{3}\)
bài 3 thực hiện phép tính
a\(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
b\(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
c\(\left(\dfrac{13}{5}+\dfrac{7}{16}\right)+\left(\dfrac{-15}{16}+\dfrac{6}{15}\right)\) d \(\left(6-2\dfrac{4}{5}\right).3\dfrac{1}{8}-1\dfrac{3}{5}:\dfrac{1}{4}\)
a) Ta có: \(\dfrac{5}{8}+\dfrac{3}{17}+\dfrac{4}{18}+\dfrac{20}{-17}+\dfrac{-2}{9}+\dfrac{21}{56}\)
\(=\left(\dfrac{3}{17}-\dfrac{20}{17}\right)+\left(\dfrac{2}{9}-\dfrac{2}{9}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)\)
\(=-1+1=0\)
b) Ta có: \(\left(\dfrac{9}{16}+\dfrac{8}{-27}\right)+\left(1+\dfrac{7}{16}+\dfrac{-19}{27}\right)\)
\(=\left(\dfrac{9}{16}+\dfrac{7}{16}\right)+\left(\dfrac{-8}{27}-\dfrac{19}{27}\right)+1\)
=1-1+1=1
Tính:
a) \(\dfrac{3^6.45^4-15^{13}.5^{\cdot-9}}{27^4.25^3+45^6}\)
b) \(\dfrac{\left(\dfrac{2}{5}\right)^7.5^7+\left(\dfrac{9}{4}\right)^3:\left(\dfrac{3}{16}\right)^3}{2^7.5^2+512}\)
\(a,=\dfrac{3^6\cdot5^4\cdot9^4-5^{13}\cdot3^{13}\cdot5^{-9}}{3^{12}\cdot5^6+9^6\cdot5^6}=\dfrac{3^{14}\cdot5^4-5^4\cdot3^{13}}{3^{12}\cdot5^6+3^{12}\cdot5^6}\\ =\dfrac{3^{13}\cdot5^4\cdot2}{2\cdot3^{12}\cdot5^6}=\dfrac{3}{5^2}=\dfrac{3}{25}\)
\(b,=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}\cdot\dfrac{16}{3}\right)^3}{2^7\cdot5^2+2^9}=\dfrac{2^7+12^3}{2^7\left(5^2+2^2\right)}=\dfrac{2^7+4^3\cdot3^3}{2^7\cdot29}=\dfrac{2^6\left(2+3^3\right)}{2^7\cdot29}=\dfrac{1}{2}\)
a) \(\dfrac{3^6\cdot3^8\cdot5^4-5^{13}\cdot3^{13}\cdot5^{-9}}{3^{12}\cdot5^6+3^{12}\cdot5^6}=\dfrac{3^{14}\cdot5^4-3^{13}\cdot5^4}{3^{12}\cdot5^6\cdot2}=\dfrac{3^{12}\cdot5^4\left(3^2-3\right)}{3^{12}\cdot5^6\cdot2}=\dfrac{3^2-3}{5^2\cdot2}=\dfrac{6}{50}=\dfrac{3}{25}\)
Tính nhanh :
\(A=\left(-\dfrac{5}{7}+\dfrac{8}{5}\right):\dfrac{91}{8}+\left(-\dfrac{2}{7}-\dfrac{3}{5}\right):\dfrac{91}{8}\)
\(B=\dfrac{13}{15}:\left(\dfrac{4}{5}-\dfrac{3}{7}\right)+\dfrac{13}{15}:\left(\dfrac{2}{5}-\dfrac{1}{9}\right)\)
(Gíup mình với )
\(A=\left(-\dfrac{5}{7}+\dfrac{8}{5}\right):\dfrac{91}{8}+\left(-\dfrac{2}{7}-\dfrac{3}{5}\right):\dfrac{91}{8}\)
\(=\dfrac{31}{35}:\dfrac{91}{8}+\dfrac{-31}{35}:\dfrac{91}{8}\)
\(=\dfrac{248}{3185}+\dfrac{-248}{3185}\)
= 0
\(B=\dfrac{13}{15}:\left(\dfrac{4}{5}-\dfrac{3}{7}\right)+\dfrac{13}{15}:\left(\dfrac{2}{5}-\dfrac{1}{9}\right)\)
\(=\dfrac{13}{15}:\dfrac{13}{35}+\dfrac{13}{15}:\dfrac{13}{45}\)
\(=\dfrac{7}{3}+3\)
\(=\dfrac{16}{3}\)
BT2: Tính nhanh:
3) \(\dfrac{-41}{32}\left(\dfrac{15}{8}-\dfrac{16}{41}\right)+\dfrac{15}{8}\left(\dfrac{41}{32}-\dfrac{8}{3}\right)\)
4) \(\dfrac{13}{29}\left(\dfrac{29}{5}-\dfrac{45}{8}\right)-\dfrac{45}{8}\left(\dfrac{9}{8}-\dfrac{13}{29}\right)\)
3)\(\dfrac{-41}{32}\left(\dfrac{15}{8}-\dfrac{16}{41}\right)+\dfrac{15}{8}\left(\dfrac{41}{32}-\dfrac{8}{3}\right)\)
=\(\dfrac{-41}{32}.\dfrac{15}{8}-\dfrac{-41}{32}.\dfrac{16}{41}+\dfrac{15}{8}.\dfrac{41}{32}-\dfrac{15}{8}.\dfrac{8}{3}\)
=\(\left(\dfrac{-41}{32}.\dfrac{15}{8}+\dfrac{15}{8}.\dfrac{41}{32}\right)+\dfrac{-16}{41}.\dfrac{-41}{32}-\dfrac{15}{8}.\dfrac{8}{3}\)
=\(0+\dfrac{1}{2}-5=\dfrac{-9}{2}\)
4)\(\dfrac{13}{29}\left(\dfrac{29}{5}-\dfrac{45}{8}\right)-\dfrac{45}{8}\left(\dfrac{9}{8}-\dfrac{13}{29}\right)\)
=\(\dfrac{13}{29}.\dfrac{29}{5}-\dfrac{45}{8}.\dfrac{13}{29}-\dfrac{45}{8}.\dfrac{9}{8}-\dfrac{45}{8}.\dfrac{13}{29}\)
=\(\left(\dfrac{45}{8}.\dfrac{13}{29}-\dfrac{45}{8}.\dfrac{13}{29}\right)-\dfrac{13}{29}.\dfrac{29}{5}-\dfrac{45}{8}.\dfrac{9}{8}\)
=\(0-\dfrac{13}{5}-\dfrac{405}{64}=\dfrac{-2857}{320}\)
e) \(\left(15-6\dfrac{13}{18}\right)\):\(12\dfrac{1}{27}\)-\(2\dfrac{1}{8}\):\(1\dfrac{11}{40}\)
g) (-3,2).\(\dfrac{-15}{64}\)+\(\left(0,8-2\dfrac{4}{15}\right)\):\(3\dfrac{2}{3}\)
Đề bài là:Tính các giá trị biểu thức sau ạ
a: \(=\left(9-\dfrac{13}{18}\right):\dfrac{325}{27}-\dfrac{17}{8}:\dfrac{51}{40}\)
\(=\dfrac{149}{18}\cdot\dfrac{27}{325}-\dfrac{17}{8}\cdot\dfrac{40}{51}\)
\(=\dfrac{447}{650}-\dfrac{5}{3}=-\dfrac{1909}{1950}\)
b: \(=\dfrac{48}{64}+\left(\dfrac{4}{5}-2-\dfrac{4}{15}\right):\dfrac{11}{3}\)
\(=\dfrac{3}{4}+\dfrac{-22}{15}\cdot\dfrac{3}{11}=\dfrac{3}{4}-\dfrac{2}{5}=\dfrac{15-8}{20}=\dfrac{7}{20}\)
Tính: \(E=\dfrac{\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{2002}-1\right).\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{9999}{10000}}\)
Giải chi tiết giúp mình nha. Thanks
\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)
\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)
\(\left(3-x\right)^3=-\dfrac{27}{64};\left(x-5\right)^3=\dfrac{1}{-27};\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8};\left(2x-1\right)^2=\dfrac{1}{4};\left(2-3x\right)^2=\dfrac{9}{4};\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)