( a + b - c ) ^ 2
( a - b - c)^2 Tính giúp mk theo hằng đẳng thức với
Chứng ming hằng đẳng thức
(a+b+c)³=a³+b³+c³+3(a+b)*(b+c)*(c+a)
Giúp mk nhé
Biến đổi vế trái ta có:
\(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3\)
\(=a^3+b^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)+c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
=>đpcm
Để tính giá trị biểu thức 20212 – 212 theo phương pháp dùng hằng đẳng thức thì áp dụng hằng đẳng thức nào sau đây?
A. (A – B)2 = A2 – 2AB + B2
B. (A + B)2 = A2 + 2AB + B2
C. A2 – B2 = (A + B)(A – B)
D. A3 – B3 = (A – B)(A2 + AB + B2)
chứng minh hằng đẳng thức
a)(a+b+c)^3 - a^3 -b^3 - c^3 = 3(a+b)(b+c)(c+a)
b) a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)
Giúp mình với nhé
cm bất đẳng thức a^2 + b^2 + c^2 >= a*(b+c)
mn giúp mk với
Ta có a2 + b2 + c2 \(\ge a\left(b+c\right)\)
<=> 2a2 + 2b2 + 2c2 \(\ge\)2a(b + c)
<=> 2a2 + 2b2 + 2c2 \(\ge\)2ab + 2ac
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac \(\ge\)0
<=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + b2 + c2 \(\ge0\)
<=> (a - b)2 + (a - c)2 + b2 + c2 \(\ge0\)(đúng)
Dấu "=" xảy ra <=> a = b = c = 0
=> BĐT được chứng minh
Giúp mình với:
1. Cm hằng đẳng thức: ( a + b + c ) = a^3 + b^3 + c^3 ( a + b )( b + c )( c + a )
2. Cho a + b + c = 0. CM a^3 + b^3 + c^3 = 3abc.
THANK YOU
thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :
a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
câu 2:<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
luôn đúng do a+b+c=0
câu 1:(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c3^+3(a+b)(ab+ac+bc+c2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)
CHÚC BẠN HỌC TỐT^^
Câu 4. Viết theo hằng đẳng thức
a) (x – 3)2.
b) (3x – 1)2.
c) (1 – 2x)2
d) (x – ½)2.
\(\left(x-3\right)^2=x^2-6x+9\\ \left(3x-1\right)^2=9x^2-6x+1\\ \left(1-2x\right)^2=1-4x+4x^2\\ \left(x-\dfrac{1}{2}\right)^2=x^2-x+\dfrac{1}{4}\)
giúp mk vs mai phải nộp bài r
Phân tích thành nhân tử dùng phương pháp dùng hằng đẳng thức
a) (4+7a)^2 - (8-9c)^2
b) 4(x+y)^2 - z^2
c) a^2 - 9(b-c)^2
d)1/4(a+b)^2 -1
câu a sử dụng hdt số 3
cau b tach 4=2*2
cau c tach 9=3*3
cau d tach 1/4=1/2*1/2
Tính (dùng hằng đẳng thức)
a) (A + B + C)2
b) (A + B - C)2
c) (A - B - C)2
a) ( A + B + C )2
= [ ( A + B ) + C ]2
= ( A + B )2 + 2( A + B )C + C2
= A2 + B2 + C2 + 2AB + 2BC + AC
b) ( A + B - C )2
= [ ( A + B ) - C ]2
= ( A + B )2 - 2( A + B )C + C2
= A2 + B2 + C2 + 2AB - 2BC - 2AC
c) ( A - B - C )2
= [ ( A - B ) - C ]2
= ( A - B )2 - 2( A - B )C + C2
= A2 + B2 + C2 - 2AB + 2BC - 2AC
Bài làm :
a) ( A + B + C )2
= [ ( A + B ) + C ]2
= ( A + B )2 + 2( A + B )C + C2
= A2 + B2 + C2 + 2AB + 2BC + AC
b) ( A + B - C )2
= [ ( A + B ) - C ]2
= ( A + B )2 - 2( A + B )C + C2
= A2 + B2 + C2 + 2AB - 2BC - 2AC
c) ( A - B - C )2
= [ ( A - B ) - C ]2
= ( A - B )2 - 2( A - B )C + C2
= A2 + B2 + C2 - 2AB + 2BC - 2AC
Với a, b là hai số bất kì, trong các đẳng thức sau, đẳng thức nào không phải hằng đẳng
thức?
A. (a+b)2 =a2 +2ab+b2 B. a2 – 1 =3a C. a(2a+b) =2a2 + ab D. a(b+c) =ab+ac