tìm x,y,z:
\(\dfrac{x-3}{8}\)=\(\dfrac{y-1}{3}\) và 4x-5y=10
Cho \(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\) và x - y + z = 200. Tìm x, y, z
\(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\)
=>\(\left\{{}\begin{matrix}\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}\\\dfrac{4x-3y}{5}=\dfrac{3z-5x}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\left(4x-3y\right)=5\left(5y-4z\right)\\4\left(4x-3y\right)=5\left(3z-5x\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x-9y-25y+20z=0\\16x-12y-15z+25x=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\end{matrix}\right.\)
mà x-y+z=200 nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}36x-102y+60z=0\\164x-48y-60z=0\\60x-60y+60z=12000\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}200x-150y=0\\-24x-42y=-12000\\x-y+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x-3y=0\\4x+7y=2000\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-10y=-2000\\4x-3y=0\\x-y+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=200\\4x=3y\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=200\\x=\dfrac{3}{4}y=150\\150-200+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=200\\x=150\\z=250\end{matrix}\right.\)
1/ x\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\text{và}2x+3y-z=50\)
2/ x : y : z = 3 : 5 ; ( - 2 ) và 5x - y + 3z = -16
3/ 2x + 3y ; 7z = 5y và 3x - 7y + 5z = 30
4/ \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\text{và}x-y-z=38\)
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)
Do đó: x=-16; y=-24; z=-30
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
1.5x=8y=20z và x-y-x-z=3
2.\(\dfrac{x}{1}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{4}\)và 4x+y-z=8
2: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{4x+y-z}{4\cdot3+12-16}=\dfrac{8}{8}=1\)
Do đó: x=3; y=12; z=16
Tìm x,y,z biết :
1) \(x:y:z=3:5:\left(-2\right)\) và \(5x-y+3z=-16\)
2) \(\dfrac{x}{2}=\dfrac{y}{-3};\dfrac{z}{3}=\dfrac{y}{4}\) và \(x+y+z=5,2\)
3) \(2x=3y;7z=5y\) và \(3x-7y+5z=30\)
4) \(3x=4y=5z\) và \(x-\left(y+z\right)=-21\)
5) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và \(2x+3y-z=50\)
Tìm x,y,z biết:a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{10}\)và y-x=6
Tìm x,y,z biết:b) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{7}\)và x-2y+z=18
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
⇒\(\dfrac{y-x}{5-2}=\dfrac{6}{3}=2\)
\(\dfrac{x}{2}=2\Rightarrow x=4\)
\(\dfrac{y}{5}=2\Rightarrow y=10\)
\(\dfrac{z}{10}=2\Rightarrow z=20\)
b) Ta có: \(\dfrac{x}{8}=\dfrac{2y}{6}=\dfrac{z}{7}\)
\(\dfrac{x-2y+z}{8-6+7}=\dfrac{18}{9}=2\)
\(\dfrac{x}{8}=2\Rightarrow x=16\)
\(\dfrac{y}{3}=2\Rightarrow y=6\)
\(\dfrac{z}{7}=2\Rightarrow z=14\)
Tìm \(x\), \(y\), \(z\), biết:
\(\dfrac{4}{3x-2y}=\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\) và \(x+y-z=-10\)
1, \(\dfrac{x}{3}=\dfrac{y}{2}\); \(\dfrac{x}{5}=\dfrac{x}{7}\) và x +2y = -112
2, 2x = 3y; 5y = 7z và 3x - 7y + 5z = 30
3, \(\dfrac{x}{y}=\dfrac{10}{9};\) \(\dfrac{y}{z}=\dfrac{3}{4}\) và x +2y - 3z = -48
Làm giúp, cần gấp
\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)
\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)
⇒\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)⇒\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
⇒x=42,y=28,z=20
\(\dfrac{x}{3}=\dfrac{y}{2}\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}\)
\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)
⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)⇒\(\dfrac{x}{15}=\dfrac{2y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)
⇒x=48,y=32,z=336/5
Lời giải:
1. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{3}=\frac{y}{2}=\frac{2y}{4}=\frac{x+2y}{3+4}=\frac{-112}{7}=-16$
$\Rightarrow x=-16.3=-48; y=-16.2=-32$
Đoạn $\frac{x}{5}=\frac{x}{7}$ là sao em? Em xem lại đề.
2.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}\Rightarrow \frac{x}{21}=\frac{y}{14}(1)$
$5y=7z\Rightarrow \frac{y}{7}=\frac{z}{5}\Rightarrow \frac{y}{14}=\frac{z}{10}(2)$
Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{10}$
Áp dụng tính chất dãy tỷ số bằng nhau:
$\frac{x}{21}=\frac{y}{14}=\frac{z}{10}$
$=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2$
$\Rightarrow x=2.21=42; y=2.14=28; z=2.10=20$
Bài 2: Tìm x,y,z biết
h) \(\dfrac{x}{y}\) = \(\dfrac{9}{10}\) và y - x = 120
k) \(\dfrac{x}{y}\) = \(\dfrac{3}{4}\) và -3x + 5y = 33
Mg giải gấp giúp mình với mình tht sự gấp lắm ạ TT
h) x/y = 9/10 ⇒ y/10 = x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
y/10 = x/9 = (y - x)/(10 - 9) = 120/1 = 120
*) x/9 = 120 ⇒ x = 120.9 = 1080
*) y/10 = 120 ⇒ y = 120.10 = 1200
Vậy x = 1080; y = 1200
k) x/y = 3/4
⇒ x/3 = y/4
⇒ 5y/20 = 3x/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
5y/20 = 3x/9 = (5y - 3x)/(20 - 9) = 33/11 = 3
*) 3x/9 = 3 ⇒ x = 3.9:3 = 9
*) 5y/20 = 3 ⇒ y = 3.20:5 = 12
Vậy x = 9; y = 12